高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先进核能系统结构材料辐照性能研究

朱升云 袁大庆

朱升云, 袁大庆. 先进核能系统结构材料辐照性能研究[J]. 原子核物理评论, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
引用本文: 朱升云, 袁大庆. 先进核能系统结构材料辐照性能研究[J]. 原子核物理评论, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
ZHU Shengyun, YUAN Daqing. Study of Radiation Properties of Structural Materials for Advanced Nuclear Energy Systems[J]. Nuclear Physics Review, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
Citation: ZHU Shengyun, YUAN Daqing. Study of Radiation Properties of Structural Materials for Advanced Nuclear Energy Systems[J]. Nuclear Physics Review, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302

先进核能系统结构材料辐照性能研究

doi: 10.11804/NuclPhysRev.34.03.302
基金项目: 国家自然科学基金重大项目(91126002);压水堆重大专项(2012ZX06004-005);IAEACRP(15165/R0);国家重点基础研究发展计划(973计划)(G1999022600,2007CB209900)
详细信息
    作者简介:

    朱升云(1941-),男,浙江余姚人,研究员,从事原子核物理研究;E-mail:zhusy@ciae.ac.cn

  • 中图分类号: TL375.6

Study of Radiation Properties of Structural Materials for Advanced Nuclear Energy Systems

Funds: Major Program of National Natural Science Foundation of China (91126002); Major Program of Pressurized Water Reactor(2012ZX06004-005); IAEA CRP(15165/R0); National Basic Research Program of China (973 Program)(G1999022600, 2007CB209900)
  • 摘要: 首先简要介绍第一代到先进的第四代核能系统的发展、与核能系统发展密切的抗辐照结构材料研发进展、第四代核能系统结构材料辐照性能研究新方法。第四代核能系统发展中,辐照引起材料性能退化是一个需要研究和解决的瓶颈问题。现有中子源都不能满足第四代核能系统结构材料高剂量中子辐照性能研究的要求。为此,发展了用于核能系统结构材料高剂量辐照性能快速检测加速器重离子辐照方法和第四代核能系统实际辐照工况模拟的重离子与氢和氦三束同时辐照新方法,文中进行了详细的介绍。最后介绍了中国原子能科学研究院核能系统结构材料辐照性能研究现状和近期发展计划。该院在HI-13串列加速器器上建立了多种不同用途的重离子辐照装置、三个独立加速器构成的重离子与氢和氦三束同时辐照实验平台,开展了一系列核能结构材料,例如国产改进型奥氏体钢、CLAM钢、1515钢、钽、钨等的辐照性能的系统测试和研究。为了更好地开展核能结构材料性能研究,从国外引进了一台超导直线加速器和一台可变能量重离子回旋加速器。结合现有2×13 MeV,2×1.7 MV串列加速器、30 MeV和100 MeV质子回旋加速器、高压倍加器,中国实验快堆、中国先进研究堆、微堆等,CIAE将建成一个比较完整和先进的核能系统结构材料辐照实验平台系统供国内外用户使用。


    This paper introduces briefly the development of nuclear energy systems from the GEN I to the advanced GEN IV, the progress of manufacturing radiation resistant materials associated with the development of nuclear energy systems and the new methods of investigating radiation properties of the structural materials for the GEN IV nuclear energy systems at first. Irradiation induced deterioration of materials properties is a bottle neck problem, which must be investigated and solved for the development of the GEN IV nuclear energy systems. Unfortunately, all the currently available neutron sources cannot meet the requirements of investigating radiation properties of structural materials irradiated by high dose neutron irradiation in the GEN IV nuclear energy systems. Therefore, two new methods of the accelerator heavy ion irradiation that simulates the high-dose neutron irradiation and the triple beam irradiation that mimics the real neutron irradiation environment in the GEN IV nuclear energy systems have been developed. These two methods are introduced in this paper. The present status of the study on radiation properties of structural materials for nuclear energy systems of the new generation and the near future development plan at China Institute of Atomic Energy (CIAE) are described also. The accelerator heavy ion irradiation facilities for different applications and the simultaneous triple beam irradiation platform with three separate accelerators or implanters have been established at the HI-13 tandem accelerator of CIAE. A series of structural materials for nuclear energy systems, such as the home-made modified austenic steel, CLAM steel, 1515 steel, Tantalum, Tungsten, etc. have been tested and investigated systematically. A superconducting linear accelerator and a variable energy heavy ion cyclotron have been imported from abroad for a better performance of the study. Combined with the currently existing facilities of 2×13 MeV and 2×1.7 MV tandem accelerators, 30 and 100 MeV proton cyclotrons, China experimental fast reactor, China advance research reactor, Miniature neutron source reactor, etc. a comprehensive and advanced system of experimental irradiation platform for structural materials of nuclear energy systems will be established in the near future for both domestic and foreign users.
  • [1]

    百度百科,第四代核能系统[EB/OL]. [2016-11-10]https://baike.baidu.com/item/%E7%AC%AC%E5%9B%9B%E4%BB%A3%E6%A0%B8%E8%83%BD%E7%B3%BB%E7%BB%9F/355515?fr=aladdin

    百度百科,第四代核能系统[EB/OL]. https://baike.baidu.com/item/%E7%AC%AC%E5%9B%9B%E4%BB%A3%E6%A0%B8%E8%83%BD%E7%B3%BB%E7%BB%9F/355515?fr=aladdin

    [2] RACHKOV V I, KALYAKIN G, KUKHARCHUK O F, et al. Thermal Engineering, 2014, 61(5):327.
    [3] ZINKLE S J, BUSBY J T. Materials Today, 2009, 12:12.
    [4] YVON P, CARRE F. Journal of Nuclear Materials, 2008, 385:217.
    [5] ALLEN T, BUSBY J, MEYER M, et al. Materials Today, 2010, 13:14.
    [6] MURTY K L, CHARIT I. Journal of Nuclear Materials, 2008, 38:189.
    [7] KULCINSKJ G L, DORAN D G, ABDOU M A. ASTM Report 74-28, 1977:329.
    [8] PACKAN N H, FARRELL K, STIEGLER J O. Journal of Nuclear Materials 1978, 78:143.
    [9] KULCINSKI G L, LAIDLER J J, DORAN D G, et al. Radiation Effects, 1971, 7(3-4):195.
    [10] NELSON R S, MAZEY D J, HUDSON J A, et al. Journal of Nuclear Materials, 1970, 37(1):1.
    [11] ABROMEIT C. Journal of Nuclear Materials, 1994, 216:78.
    [12] LEWIS M B, PACKAN N H, WELLS G F, et al. Nucl Instr Meth, 1979, 167(2):233.
    [13] NEKLYUDOV V Z I, OZHIGOV L, VOYEVODIN V, et al. Proceedings of ACC Appl 2007:275.
    [14] ZELENSKIJ V F, NEKLYUDOV I M. Trans Tech Publications, 1992, 97:429.
    [15] ASTM E521, 2009, "Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation," ASTM International, West Conshohocken, PA, doi: 10.1520/E0521-96R09E01.
    [16]

    GARNER F A, SHAO L, OLOCZKO M B, et al. Use of Self-Ion Bombardment to Study Void Swelling in Advanced Radiation-Resistant Alloys[EB/OL].[2016-11-10]. https://www.researchgate.net/publication/281188208.

    GARNER F A, SHAO L, OLOCZKO M B, et al. Use of Self-Ion Bombardment to Study Void Swelling in Advanced Radiation-Resistant Alloys, https://www.researchgate.net/publication/281188208.

    [17]

    BRYK V, BORODIN O, KALCHENKO A, et al. Ion Issues on Irradiation Behavior of Structural Materials at High Doses and Gas Concentrations[EB/OL].[2016-11-10]. https://www.researchgate.net/publication/259294088.

    BRYK V, BORODIN O, KALCHENKO A, et al. Ion Issues on Irradiation Behavior of Structural Materials at High Doses and Gas Concentrations, https://www.researchgate.net/publication/259294088.

    [18] GETTO E, SUN K, MONTERROSA A M, et al. Journal of Nuclear Materials, 2016, 480:159.
    [19] CHEN TIANYI, AYDOGAN E, JONATHAN G, et al. Journal of Nuclear Materials, 2015, 467:42.
    [20] ZHU Shengyun, LUO Qi, FAN Zhiguo, et al. Phys Lett, 199714:535
    [21] ZHU Shengyun, IWATA T, XU Yongjun, et al. Modern Physics Letters B, 2004, 18:881
    [22] FARRELL K, LEWIS M B, PACKAN N H, et al. Scripta Metallurgica, 1978, 12(12):1121.
    [23] SERRUY S Y, RUAULT M O, TROCELLIER P, et al. Comptes Rendus Physique, 2008, 9(3-4):437.
    [24] TROCELLIE R P, SERRUYS Y, MIRO S, et al. Nucl Instr Meth B, 2008, 266(12):3178.
    [25] BECK L, SERRUYS Y, MIRO S, et al. Journal of Materials Research, 2015, 30(09):1183.
    [26] SERRUY S Y, TROCELLIER P, MIRO S, et al. Journal of Nuclear Materials, 2009, 386:967.
    [27] LEWIS M B, ALLEN W R, BUHL R A, et al. Nucl Instr Meth B, 1989, 43(2):243.
    [28] SERRUYS Y, RUAULT M, TROCELLIER P, et al. Nucl Instr Meth B, 2005, 240(1):124.
    [29] PELLEGRINO S, TROCELLIER P, MIRO S, et al. Nucl Instr Meth B, 2012, 273:213.
    [30] KOHYAMA A, KATOH Y, ANDO M, et al. Fusion Engineering and Design, 2000, 51:789.
    [31] HAMADA S, MIWA Y, YAMAKI D, et al. Journal of Nuclear Materials, 1998, 258:383.
    [32] VOYEVODIN V, KUPRⅡYANNOVA Y, BRYK V, et al. Proceedings of IWSMT-12, Bregenz, Austria, 19-23 October, 2014.
    [33] TANAKA T, OKA K, OHNUKI S, et al. Journal of Nuclear Materials, 2004, 329-333:294.
    [34] SEKIMURA N, IWAI T, ARAI Y, et al. Journal of nuclear materials, 2000, 283:224.
    [35] Final Report on IAEA CRPSMoRE:"Accelerator Simula-tion and Theoretical Modelling of Radiation Effects", 2012.
    [36] ZHENG Yongnan, YI Zuo, XU Yongjun, et al. Problems of Atomic Science and Technology, 2009, 4:89.
    [37] ZHENG Yongnan, HUANG Junying, PENG Lei, et al. Plasma Science and Technology, 2012, 14:629.
    [38] HUANG Junying, LI Chunjing, LI Yanfen, et al. Journal of Nuclear Science and Engineering, 2007, 27:41. (in Chinese) (黄郡英,李春京,李艳芬, 等,核科学与工程, 2007, 27:41.)
    [39] YUAN Daqing, ZHENG Yongnan ZUO Yi, et al, Chin Phys Lett, 2014, 31:046101.
  • 加载中
计量
  • 文章访问数:  2313
  • HTML全文浏览量:  381
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-25
  • 修回日期:  2017-04-07
  • 刊出日期:  2017-07-18

先进核能系统结构材料辐照性能研究

doi: 10.11804/NuclPhysRev.34.03.302
    基金项目:  国家自然科学基金重大项目(91126002);压水堆重大专项(2012ZX06004-005);IAEACRP(15165/R0);国家重点基础研究发展计划(973计划)(G1999022600,2007CB209900)
    作者简介:

    朱升云(1941-),男,浙江余姚人,研究员,从事原子核物理研究;E-mail:zhusy@ciae.ac.cn

  • 中图分类号: TL375.6

摘要: 首先简要介绍第一代到先进的第四代核能系统的发展、与核能系统发展密切的抗辐照结构材料研发进展、第四代核能系统结构材料辐照性能研究新方法。第四代核能系统发展中,辐照引起材料性能退化是一个需要研究和解决的瓶颈问题。现有中子源都不能满足第四代核能系统结构材料高剂量中子辐照性能研究的要求。为此,发展了用于核能系统结构材料高剂量辐照性能快速检测加速器重离子辐照方法和第四代核能系统实际辐照工况模拟的重离子与氢和氦三束同时辐照新方法,文中进行了详细的介绍。最后介绍了中国原子能科学研究院核能系统结构材料辐照性能研究现状和近期发展计划。该院在HI-13串列加速器器上建立了多种不同用途的重离子辐照装置、三个独立加速器构成的重离子与氢和氦三束同时辐照实验平台,开展了一系列核能结构材料,例如国产改进型奥氏体钢、CLAM钢、1515钢、钽、钨等的辐照性能的系统测试和研究。为了更好地开展核能结构材料性能研究,从国外引进了一台超导直线加速器和一台可变能量重离子回旋加速器。结合现有2×13 MeV,2×1.7 MV串列加速器、30 MeV和100 MeV质子回旋加速器、高压倍加器,中国实验快堆、中国先进研究堆、微堆等,CIAE将建成一个比较完整和先进的核能系统结构材料辐照实验平台系统供国内外用户使用。


This paper introduces briefly the development of nuclear energy systems from the GEN I to the advanced GEN IV, the progress of manufacturing radiation resistant materials associated with the development of nuclear energy systems and the new methods of investigating radiation properties of the structural materials for the GEN IV nuclear energy systems at first. Irradiation induced deterioration of materials properties is a bottle neck problem, which must be investigated and solved for the development of the GEN IV nuclear energy systems. Unfortunately, all the currently available neutron sources cannot meet the requirements of investigating radiation properties of structural materials irradiated by high dose neutron irradiation in the GEN IV nuclear energy systems. Therefore, two new methods of the accelerator heavy ion irradiation that simulates the high-dose neutron irradiation and the triple beam irradiation that mimics the real neutron irradiation environment in the GEN IV nuclear energy systems have been developed. These two methods are introduced in this paper. The present status of the study on radiation properties of structural materials for nuclear energy systems of the new generation and the near future development plan at China Institute of Atomic Energy (CIAE) are described also. The accelerator heavy ion irradiation facilities for different applications and the simultaneous triple beam irradiation platform with three separate accelerators or implanters have been established at the HI-13 tandem accelerator of CIAE. A series of structural materials for nuclear energy systems, such as the home-made modified austenic steel, CLAM steel, 1515 steel, Tantalum, Tungsten, etc. have been tested and investigated systematically. A superconducting linear accelerator and a variable energy heavy ion cyclotron have been imported from abroad for a better performance of the study. Combined with the currently existing facilities of 2×13 MeV and 2×1.7 MV tandem accelerators, 30 and 100 MeV proton cyclotrons, China experimental fast reactor, China advance research reactor, Miniature neutron source reactor, etc. a comprehensive and advanced system of experimental irradiation platform for structural materials of nuclear energy systems will be established in the near future for both domestic and foreign users.

English Abstract

朱升云, 袁大庆. 先进核能系统结构材料辐照性能研究[J]. 原子核物理评论, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
引用本文: 朱升云, 袁大庆. 先进核能系统结构材料辐照性能研究[J]. 原子核物理评论, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
ZHU Shengyun, YUAN Daqing. Study of Radiation Properties of Structural Materials for Advanced Nuclear Energy Systems[J]. Nuclear Physics Review, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
Citation: ZHU Shengyun, YUAN Daqing. Study of Radiation Properties of Structural Materials for Advanced Nuclear Energy Systems[J]. Nuclear Physics Review, 2017, 34(3): 302-309. doi: 10.11804/NuclPhysRev.34.03.302
参考文献 (39)

目录

    /

    返回文章
    返回