高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核物质和夸克物质的对称能(英文)

陈列文

陈列文. 核物质和夸克物质的对称能(英文)[J]. 原子核物理评论, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
引用本文: 陈列文. 核物质和夸克物质的对称能(英文)[J]. 原子核物理评论, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
CHEN Liewen. Symmetry Energy in Nucleon and Quark Matter[J]. Nuclear Physics Review, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
Citation: CHEN Liewen. Symmetry Energy in Nucleon and Quark Matter[J]. Nuclear Physics Review, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020

核物质和夸克物质的对称能(英文)

doi: 10.11804/NuclPhysRev.34.01.020
基金项目: 国家重点基础研究发展计划(973项目)(2013CB834405,2015CB856904);国家自然科学基金资助项目(11625521,11275125,11135011);上海市“东方学者”;“粒子物理与星系宇宙学”教育部重点实验室项目;上海市科委项目(11DZ2260700)
详细信息
  • 中图分类号: O572.21

Symmetry Energy in Nucleon and Quark Matter

Funds: National Basic Research Program of China(973 Program)(2013CB834405, 2015CB856904); National Natural Science Foundation of China(11625521, 11275125, 11135011); Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, China; Program of Science and Technology Commission of Shanghai Municipality(11DZ2260700)
  • 摘要: 对称能表征了同位旋非对称强相互作用物质状态方程的同位旋相关部分,它对于理解核物理和天体物理中的许多问题有重要意义。简要总结了关于核物质和夸克物质对称能研究的最新进展。对于核物质对称能,通过对核结构,核反应以及中子星的研究,目前对其亚饱和密度的行为已有比较清楚的认识,同时,对饱和密度附近对称能的约束也取得了很好的研究进展。但如何确定核物质对称能的高密行为仍然是一个挑战。另一方面,在极端高重子数密度条件下,强相互作用物质将以退禁闭的夸克物质状态存在。同位旋非对称夸克物质可能存在于致密星内部,也可能产生于极端相对论重离子碰撞中。对最近关于夸克物质对称能对夸克星性质的影响以及重夸克星的存在对夸克物质对称能的约束的研究工作进行了介绍,结果表明同位旋非对称夸克物质中上夸克和下夸克可能感受到很不一样的相互作用,这对于研究极端相对论重离子碰撞中部分子动力学的同位旋效应有重要启发。


    The symmetry energy characterizes the isospin dependent part of the equation of state of isospin asymmetric strong interaction matter and it plays a critical role in many issues of nuclear physics and astrophysics. In this talk, we briefly review the current status on the determination of the symmetry energy in nucleon (nuclear) and quark matter. For nuclear matter, while the subsaturation density behaviors of the symmetry energy are relatively well-determined and significant progress has been made on the symmetry energy around saturation density, the determination of the suprasaturation density behaviors of the symmetry energy remains a big challenge. For quark matter, which is expected to appear in dense matter at high baryon densities, we briefly review the recent work about the effects of quark matter symmetry energy on the properties of quark stars and the constraint of possible existence of heavy quark stars on quark matter symmetry energy. The results indicate that the u and d quarks could feel very different interactions in isospin asymmetric quark matter, which may have important implications on the isospin effects of partonic dynamics in relativistic heavy-ion collisions.
  • [1] LI B A, KO C M, BAUER W. Int J Mod Phys E, 1998, 7: 147.
    [2] LATTIMER J M, PRAKASH M. Science, 2004, 304: 536; LATTIMER J M, PRAKASH M. Phys Rep, 2007, 442: 109.
    [3] STEINER A W, PRAKASH M, LATTIMER J M, et al. Phys Rep, 2005, 411: 325.
    [4] BARAN V, COLONNA M, GRECO V, et al. Phys Rep, 2005, 410: 335.
    [5] CHEN L W, KO C M, LI B A et al. Front Phys China, 2007, 2: 327 [arXiv:0704.2340].
    [6] LI B A, CHEN L W, KO C M. Phys Rep, 2008, 464: 113.
    [7] TRAUTMAN W, WOLTER H H. Int J Mod Phys E, 2012, 21: 1230003.
    [8] TSANG B M, STONE J R, CAMERA F, et al. Phys Rev C, 2012, 86: 015803.
    [9] LATTIMER J M. Ann Rev Nucl Part Sci, 2012, 62: 485.
    [10] LI B A, CHEN L W, FATTOYEV F J, et al. J Phys: Conf Series, 2013, 413: 012021 [arXiv:1212.1178].
    [11] LI B A, RAMOS A, VERDE G, VIDANA I, Euro Phys. Journal A, 2014, 50.
    [12] HOROWITZ C J, BROWN E F, KIM Y, et al. J of Phys G, 2014, 41: 093001.
    [13] CHEN L W. Nucl Phys Rev, 2014, 37: 273[arXiv:1212.0284].
    [14] WANG R, CHEN L W. Phys Rev C, 2015, 92: 031303(R).
    [15] BALDO M, BURGIO G F. Prog Part Nucl Phys, 2016,[arXiv:1606.08838].
    [16] LI Z. Nucl Phys Rev, 2014, 31: 285.
    [17] JIANG W, YANG R, ZHANG D. Nucl Phys Rev, 2014, 31: 333.
    [18] DONG J, ZUO W, GU J, et al. Nucl Phys Rev, 2014, 31: 429.
    [19] WU Q, ZHANG Y, XIAO Z, et al. Nucl Phys Rev, 2016, 33: 251.
    [20] WANG H, XU C. Nucl Phys Rev, 2016, 33(1): 1; XU C. ibid, 2017, 34(1):.
    [21] HOROWITZ C J, POLLOCK S J, SOUDER P A, et al. Phys Rev C, 2001, 63: 025501.
    [22] SIL T, CENTELLES M, VI~NA S, et al. Phys Rev C, 2005, 71: 045502.
    [23] WEN D H, LI B A, CHEN L W. Phys Rev Lett, 2009, 103: 211102.
    [24] ZHENG H, ZHANG Z, CHEN L W. J Cosmo Astropart Phys, 2014, 08: 011.
    [25] CARLSON J, GANDOLFI S, PEDERIVA F, et al. Phys Rev C, 2015, 87: 1067.
    [26] XIAO Z G, LI B A, CHEN L W, et al. Phys Rev Lett, 2009, 102: 062502.
    [27] FENG Z Q, JIN G M. Phys Lett B, 2010, 683: 140.
    [28] RUSSOTTO P, WU P Z, ZORIC M, et al. Phys Lett B, 2011, 697: 471.
    [29] XU C, LI B A. Phys. Rev. C, 2010, 81: 064612.
    [30] WANG Y, GUO C, LI Q, et al. Nucl Phys Rev, 2015, 32(2): 154.
    [31] DI TORO M, BARAN V, COLONNA M, et al. Nucl Phys A, 2006, 775: 102.
    [32] DI TORO M, BARAN V, COLONNA M, GRECO V. J Phys G, 2010, 37: 083101.
    [33] PAGLIARA G, SCHAFFNER-BIELICH J. Phys Rev D, 2010, 81: 094024.
    [34] SHAO G Y, COLONNA M, DI TORO M, et al. Phys Rev D, 2012, 85: 114017.
    [35] CHU P C, CHEN L W. Astrophys J, 2014, 780: 135.
    [36] LIU H, XU J, CHEN L W, SUN K J. Phys Rev D, 2016, 94: 065032.
    [37] XIA Y H, XU C, ZONG H S. 2016, arXiv:1608.01724.
    [38] CAI B J, CHEN L W. Phys Rev C, 2012, 85: 024302.
    [39] ROCA-MAZA X, CENTELLES M, VINAS X, et al. Phys Rev Lett, 2011, 106: 252501.
    [40] CHEN L W. EPJ Web Conf, 2015, 88: 00017[arXiv:1506.09057].
    [41] VIDANA I, PROVIDENCIA C, POLLS A, et al. Phys Rev C, 2009, 80: 045806.
    [42] LI Z H, SCHULZE H J. Phys Rev C, 2008, 78: 028801.
    [43] KLAHN T, BLASCHKE D, TYPEL S, et al. Phys Rev C, 2006, 74: 035802.
    [44] SAMMARRUCA F. Int J Mod Phys E, 2010, 19: 1259.
    [45] AKMAL A, PANDHARIPANDE V R, RAVENHALL D G. Phys Rev C, 1998, 58: 1804.
    [46] FRIEDMAN B, PANDHARIPANDE V R. Nucl Phys A, 1981, 361: 502.
    [47] WIRINGA R B, FIKS V, FABROCINI A. Phys Rev C, 1988, 38: 1010.
    [48] CHEN L W. Phys Rev C, 2011, 83: 044308.
    [49] ZHANG Z, CHEN L W. Phys Lett B, 2013, 726: 234.
    [50] LATTIMER J M, STEINER A W. Eur Phys J A, 2014, 50: 40.
    [51] KORTELAINEN M, LESINSKI T, MORE J, et al. Phys Rev C, 2010, 82: 024313.
    [52] CHEN L W, KO C M, LI B A,et al. Phys Rev C, 2010, 82: 024321.
    [53] TAMⅡ A, POLTORATSKA I, von NEUMANN-COSEL Pet al. Phys Rev Lett, 2011, 107: 062502.
    [54] TRIPPA L, COLO G, VIGEZZI E, Phys Rev C, 2008, 77: 061304.
    [55] TSANG M B, ZHANG Y X, DANIELEWICZ, et al. Phys Rev Lett, 2009, 102: 122701.
    [56] DANIELEWICZ P, LEE J. Nucl Phys A, 2014, 922: 1.
    [57] STEINER A W, GANDOLFI S. Phys Rev Lett, 2012, 108: 081102.
    [58] HEBELER K, LATTIMER J, PETHICK C, et al. Phys Rev Lett, 2010, 105: 161102.
    [59] GANDOLFI S, CARLSON J, REDDY S. Phys Rev C, 2012, 85: 032801(R).
    [60] HOROWITZ C J, PIEKAREWICZ J. Phys Rev Lett, 2001, 86: 5647.
    [61] FURNSTAHL R J, Nucl Phys A, 2002, 706: 85.
    [62] WANG N, OU L, LIU M. Phys Rev C, 2013, 87: 034327.
    [63] BROWN B A. Phys Rev Lett, 2013, 111: 232502.
    [64] ZHANG Z, CHEN L W. Phys Rev C, 2015, 92: 031301(R).
    [65] CENTELLES M, ROCA-MAZA X, VINAS X, et al. Phys Rev Lett, 2009, 102: 122502; WARDA M, VINAS X, ROCA-MAZA X, et al. Phys Rev C, 2009, 80: 024316.
    [66] ALAM N, AGRAWAL B K, DE J N, et al. Phys Rev C, 2014, 90: 054317.
    [67] TYPEL S, ROPKE G, KLAHN T, et al. Phys Rev C, 2010, 81: 015803.
    [68] ROCA-MAZA X, BRENNA M, AGRAWAL B K, et al. Phys Rev C, 2013, 87: 034301.
    [69] CAO L G, MA Z Y. Chin Phys Lett, 2008, 25: 1625.
    [70] NATOWITZ J B, ROPKE G, TYPEL S, et al. Phys Rev Lett, 2010, 104: 202501; KOWALSKI S, NATOWITZ J B, SHLOMO S, et al. Phys Rev C, 2007, 75: 014601; WADA R, HAGEL K, QIN L, et al. Phys Rev C, 2012, 85: 064618.
    [71] DRISCHLER C, SOMA V, SCHWENK A. Phys Rev C, 2014, 89: 025806.
    [72] WELLENHOFER C, HOLT J W, KAISER N. Phys Rev C, 2015, 92: 015801.
    [73] XIE W J, SU J, ZHU L, ZHANG F S, Phys Lett B, 2013, 718: 1510.
    [74] XU J, CHEN L W, KO C M, et al. Phys Rev C, 2013, 87: 067601.
    [75] HONG J, DANIELEWICZ P. Phys Rev C, 2014, 90: 024605.
    [76] SONG T, KO C M. Phys Rev C, 2015, 91: 014901.
    [77] COZMA M D, LEIFELS Y, TRAUTMANN W, et al. arXiv:1305.5417v1, 2013.
    [78] RUSSOTTO P, GANNON S, KUPNY S, et al. Phys Rev C, 2016, 94: 034608.
    [79] DEMOREST P, PENNUCCI T, RANSOM, S, et al. Nature, 2010, 467: 1081.
    [80] ANTONIADIS J, FREIRE P C C, WEX N, et al. Science, 2013, 340: 6131.
    [81] REHBERG P, KLEVANSKY S P, Hufner J. Phys Rev C, 1996, 53: 410.
  • 加载中
计量
  • 文章访问数:  2194
  • HTML全文浏览量:  245
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12
  • 修回日期:  2017-02-22
  • 刊出日期:  2017-03-20

核物质和夸克物质的对称能(英文)

doi: 10.11804/NuclPhysRev.34.01.020
    基金项目:  国家重点基础研究发展计划(973项目)(2013CB834405,2015CB856904);国家自然科学基金资助项目(11625521,11275125,11135011);上海市“东方学者”;“粒子物理与星系宇宙学”教育部重点实验室项目;上海市科委项目(11DZ2260700)
  • 中图分类号: O572.21

摘要: 对称能表征了同位旋非对称强相互作用物质状态方程的同位旋相关部分,它对于理解核物理和天体物理中的许多问题有重要意义。简要总结了关于核物质和夸克物质对称能研究的最新进展。对于核物质对称能,通过对核结构,核反应以及中子星的研究,目前对其亚饱和密度的行为已有比较清楚的认识,同时,对饱和密度附近对称能的约束也取得了很好的研究进展。但如何确定核物质对称能的高密行为仍然是一个挑战。另一方面,在极端高重子数密度条件下,强相互作用物质将以退禁闭的夸克物质状态存在。同位旋非对称夸克物质可能存在于致密星内部,也可能产生于极端相对论重离子碰撞中。对最近关于夸克物质对称能对夸克星性质的影响以及重夸克星的存在对夸克物质对称能的约束的研究工作进行了介绍,结果表明同位旋非对称夸克物质中上夸克和下夸克可能感受到很不一样的相互作用,这对于研究极端相对论重离子碰撞中部分子动力学的同位旋效应有重要启发。


The symmetry energy characterizes the isospin dependent part of the equation of state of isospin asymmetric strong interaction matter and it plays a critical role in many issues of nuclear physics and astrophysics. In this talk, we briefly review the current status on the determination of the symmetry energy in nucleon (nuclear) and quark matter. For nuclear matter, while the subsaturation density behaviors of the symmetry energy are relatively well-determined and significant progress has been made on the symmetry energy around saturation density, the determination of the suprasaturation density behaviors of the symmetry energy remains a big challenge. For quark matter, which is expected to appear in dense matter at high baryon densities, we briefly review the recent work about the effects of quark matter symmetry energy on the properties of quark stars and the constraint of possible existence of heavy quark stars on quark matter symmetry energy. The results indicate that the u and d quarks could feel very different interactions in isospin asymmetric quark matter, which may have important implications on the isospin effects of partonic dynamics in relativistic heavy-ion collisions.

English Abstract

陈列文. 核物质和夸克物质的对称能(英文)[J]. 原子核物理评论, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
引用本文: 陈列文. 核物质和夸克物质的对称能(英文)[J]. 原子核物理评论, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
CHEN Liewen. Symmetry Energy in Nucleon and Quark Matter[J]. Nuclear Physics Review, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
Citation: CHEN Liewen. Symmetry Energy in Nucleon and Quark Matter[J]. Nuclear Physics Review, 2017, 34(1): 20-28. doi: 10.11804/NuclPhysRev.34.01.020
参考文献 (81)

目录

    /

    返回文章
    返回