高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率及高灵敏度小动物PET研究进展

邝忠华 李成 李兰君 胡战利 张玲 谭思晴 张健 胡启斌 王晓辉 杨永峰

邝忠华, 李成, 李兰君, 胡战利, 张玲, 谭思晴, 张健, 胡启斌, 王晓辉, 杨永峰. 高分辨率及高灵敏度小动物PET研究进展[J]. 原子核物理评论, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
引用本文: 邝忠华, 李成, 李兰君, 胡战利, 张玲, 谭思晴, 张健, 胡启斌, 王晓辉, 杨永峰. 高分辨率及高灵敏度小动物PET研究进展[J]. 原子核物理评论, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
KUANG Zhonghua, LI Cheng, LI Lanjun, HU Zhanli, ZHANG Ling, TAN Siqing, ZHANG Jian, HU Qibin, WANG Xiaohui, YANG Yongfeng. Progress of Small Animal PET Scanners with High Spatial Resolution and High Sensitivity[J]. Nuclear Physics Review, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
Citation: KUANG Zhonghua, LI Cheng, LI Lanjun, HU Zhanli, ZHANG Ling, TAN Siqing, ZHANG Jian, HU Qibin, WANG Xiaohui, YANG Yongfeng. Progress of Small Animal PET Scanners with High Spatial Resolution and High Sensitivity[J]. Nuclear Physics Review, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336

高分辨率及高灵敏度小动物PET研究进展

doi: 10.11804/NuclPhysRev.33.03.336
基金项目: 国家自然科学基金资助项目(81527804,11575285,81401410);深圳市基础研究项目(JCYJ20140417113430558,JCYJ-20150630114942310)
详细信息
    作者简介:

    邝忠华(1989-),男,湖南新田人,硕士研究生,从事检测技术与自动化装置研究;E-mail:kuangzhonghua@126.com

    通讯作者: 杨永峰,E-mail:yf.yang@siat.ac.cn
  • 中图分类号: R318.6

Progress of Small Animal PET Scanners with High Spatial Resolution and High Sensitivity

Funds: National Natural Science Foundation of China (81527804, 11575285, 81401410); Basic Research Program of Shenzhen, China (JCYJ20140417113430558, JCYJ20150630114942310)
  • 摘要: 作为一种高灵敏度且具有定量测量能力的功能分子影像技术,小动物PET越来越广泛地用于各种生物医学研究,例如疾病动物模型研究、新药物研发和新治疗方法评估等。首先回顾小动物PET成像系统的发展历史、效率和空间分辨率等性能的改进和产业化;其次,讨论了影响PET空间分辨率和效率的各种因素,包括晶体大小、探测器几何、正电子射程、光子非共线效应、图像重建算法和阻碍PET系统同时达到高空间分辨率和高效率的相互作用深度不确定效应;最后,介绍了小动物PET成像系统在以下几个方面的取得的最新进展:(1)高密度、小的光衰减常数和高光产额的闪烁晶体;(2)体积小、增益大、时间性能好、工作电压低和磁兼容的新型硅光电倍增管光探测器;(3)各种深度测量PET探测器,详细介绍了一个可达到分辨0.43 mm×0.43 mm×20 mm晶格和达到2.4 mm深度分辨率的双端读出探测器;(4)使用深度测量探测器的小动物PET成像系统,详细介绍了一个使用高分辨率双端读出探测器,全视野达到0.55 mm平均位置分辨率的小动物PET原型系统;(5)磁兼容插件式小动物PET成像系统和PET/MRI同时成像的优点;(6)小动物PET图像重建和数据校正的特点、传统的滤波反投影算法和新的迭代算法的优缺点和PET图像重建算法未来的发展方向。

    As the most sensitive and quantitative molecular imaging technique,small animal positron emission tomography (PET) has become a widely used tool in biomedical research such as in animal model of human disease,development of new drugs and the evaluation of new therapeutics.In this paper,first the history,the efforts to improve the spatial resolution and sensitivity as well as the commercialization process of small animal PET scanner are reviewed.Then the factors that affect the spatial resolution and sensitivity of PET scanner such as crystal size,detector geometry,positron range,photon noncollinearity and imaging reconstruction are discussed in detail.The depth of interaction effect which hinders the simultaneous achievement of PET spatial resolution and sensitivity are also discussed.Finally the recent progress made in the following areas of small animal PET instrumentation are introduced:(1) high density,short light decay constant and bright scintillator,(2) compact,high gain,good timing resolution,low bias voltage and MRI compatible silicon photomultiplier,(3) depth encoding detectors by using different methods,a detector using dual-ended readout,identifying 0.43 mm×0.43 mm×20 mm crystals and achieving a 2.4 mm depth of interaction resolution was introduced in detail,(4) small animal PET scanners using depth encoding detectors,a prototype scanner using high resolution dualended readout detectors and achieving an average of 0.55 mm spatial resolution in the whole field of view was introduced in detail.(5) MRI compatible small animal PET inserts and the advantage of simultaneous PET/MRI imaging,(6) image reconstruction and data correction of small animal PET,the filter back projection and iterative reconstruction algorithms are compared and a few key directions of PET image reconstruction will be presented.
  • [1] PAN Zhongyun.Diagnostics of PET[M].Beijing:People's Medical Publishing House,2005:1.(in Chinese)(潘中允.PET诊断学[M].北京:人民卫生出版社,2005:1.)
    [2] HUBER J S,MOSES W W.IEEE Transactions on Nuclear Science,1999,46(3):498;YUN Mingkai,LI Ting,ZHANG Zhiming,et al.Nuclear Physics Review,2012,29(2):162.(in Chinese)(贠明凯,李婷,章志明,等.原子核物理评论,2012,29(2):162.)
    [3] BLOOMFIELD P M,RAJESWARAN S,SPINKS T J,et al.Physics in Medicine and Biology,1995,40(6):1105.
    [4] CHERRY S R,SHAO Y,SILVERMAN R W,et al.IEEE Transactions on Nuclear Science,1997,44(3):1161.
    [5] JEAVONS A P,CHANDLER R A,DETTMAR C A R.IEEE Transactions on Nuclear Science,1999,46(3):468.
    [6] LECOMTE R,CADORETTE J,RODRIGUE S,et al.IEEE Transactions on Nuclear Science,1996,43(3):1952.
    [7] VAQUERO J J,SEIDEL J,SIEGEL S,et al.IEEE Transactions on Medical Imaging,1998,17(6):967.
    [8] WU H,PAL D,SONG T Y,et al.Journal of Nuclear Medicine,2008,49(10):1668.
    [9] STICKEL J R,QI J,CHERRY S R.Journal of Nuclear Medicine,2007,48(1):115.
    [10] BLANCO A,CAROLINO N,FERREIRA N C,et al.Nuclear Science Symposium Conference Record,2004 IEEE.IEEE,2004,4:2356.
    [11] PARK S J,ROGERS W L,CLINTHORNE N H.Physics in Medicine and Biology,2007,52(15):4653.
    [12] COOPER R J,BOSTON A J,BOSTON H C,et al.Nucl Instr and Meth A,2007,579(1):313.
    [13] ISHⅡ K,KIKUCHI Y,MATSUYAMA S,et al.Nucl Instr and Meth A,2007,576(2):435.
    [14] YANG Y,TAI Y C,SIEGEL S,et al.Physics in Medicine and Biology,2004,49(12):2527.
    [15] MISSIMER J,MADI Z,HONER M,et al.Physics in Medicine and Biology,2004,49(10):2069.
    [16] ESPAÑA S,MARCINKOWSKI R,KEEREMAN V,et al.Physics in Medicine and Biology,2014,59(13):3405.
    [17] YAMAMOTO S,WATABE H,KANAI Y,et al.Physics in Medicine and Biology,2013,58(21):7875.
    [18] RODRÍGUEZ-VILLAFUERTE M,YANG Y,CHERRY S R.Physica Medica,2014,30(1):76.
    [19] WANG L,ZHU J,LIANG X,et al.Physics in Medicine and Biology,2015,60(1):137.
    [20] LU Y,YANG K,ZHOU K,et al.Journal of Nuclear Medicine A,2014,55(8):1375.
    [21] MOSES W W.Nucl Instr and Meth,2011,648(8):S236.
    [22] STICKEL J R,CHERRY S R.Physics in Medicine and Biology,2005,50(2):179.
    [23] GOERTZEN A L,BAO Q,BERGERON M,et al.Journal of Nuclear Medicine,2012,53(8):1300.
    [24] WIENHARD K,DAHLBOM M,ERIKSSON L,et al.Journal of Computer Assisted Tomography,1994,18(1):110.
    [25] BIENIOSEK M F,OLCOTT P D,LEVIN C S.Physics in Medicine and Biology,2013,58(15):5049.
    [26] YAMAMOTO S,WATABE H,KANAI Y,et al.Nucl Instr and Meth A,2013,703:183.
    [27] KWON S I,LEE J S,YOON H S,et al.Journal of Nuclear Medicine,2011,52(4):572.
    [28] YAMAYA T,MITSUHASHI T,MATSUMOTO T,et al.Physics in Medicine and Biology,2011,56(21):6793.
    [29] SCHAART D R,SEIFERT S,VINKE R,et al.Physics in Medicine and Biology,2010,55(7):N179.
    [30] SEIFERT S,VAN DER LEI G,VAN DAM H T,et al.Physics in Medicine and Biology,2013,58(9):3061.
    [31] YOON H S,KO G B,KWON S I,et al.Journal of Nuclear Medicine,2012,53(4):608.
    [32] HONG S J,KANG H G,KO G B,et al.Physics in Medicine and Biology,2012,57(12):3869.
    [33] BELTRAME P,BOLLE E,BRAEM A,et al.Nucl Instr and Meth,2011,654(1):546.
    [34] ERIKSSON L,WIENHARD K,ERIKSSON M,et al.IEEE Transactions on Nuclear Science,2002,49(5):2085.
    [35] INADAMA N,MURAYAMA H,HAMAMOTO M,et al.IEEE Transactions on Nuclear Science,2006,53(5):2523.
    [36] SEIDEL J,VAQUERO J J,SIEGEL S,et al.IEEE Transactions on Nuclear Science,1999,46(3):485.
    [37] TSUDA T,MURAYAMA H,KITAMURA K,et al.IEEE Transactions on Nuclear Science,2004,51(5):2537.
    [38] ORITA N,MURAYAMA H,KAWAI H,et al.IEEE Transactions on Nuclear Science,2005,52(1):8.
    [39] ZHANG N,THOMPSON C J,CAYOUETTE F,et al.IEEE Transactions on Nuclear Science,2002,2(5):858.
    [40] ZHANG J,FOUDRAY A M K,OLCOTT P D,et al.IEEE Transactions on Nuclear Science,2007,54(3):415.
    [41] MOSES W W,DERENZO S E.IEEE Transactions on Nuclear Science,1994,41(4):1441.
    [42] BURR K C,IVAN A,CASTLEBERRY D E,et al.IEEE Transactions on Nuclear Science,2004,51(4):1791.
    [43] VETTER K,BURKS M,MIHAILESCU L.Nucl Instr and Meth,2004,525(1):322.
    [44] LING T,LEWELLEN T K,MIYAOKA R S.Physics in Medicine and Biology,2007,52(8):2213.
    [45] YANG Y,QI J,WU Y,et al.Physics in Medicine&Biology,2008,54(2):433.
    [46] YANG Y,DOKHALE P A,SILVERMAN R W,et al.Physics in Medicine and Biology,2006,51(9):2131.
    [47] YANG Y,WU Y,QI J,et al.Journal of Nuclear Medicine,2008,49(7):1132.
    [48] YANG Y,WU Y,FARRELL R,et al.Physics in Medicine and Biology,2011,56(19):6327.
    [49] REN S,YANG Y,CHERRY S R.Medical Physics,2014,41(7):072503.
    [50] WANG Y,SEIDEL J,TSUI B M W,et al.Journal of Nuclear Medicine,2006,47(11):1891.
    [51] HUBER J S,CHOONG W S,Wang J,et al.IEEE Transactions on Nuclear Science,2003,50(5):1650.
    [52] CARLES M,LERCHE C W,SÁNCHEZ F,et al.Nucl Instr and Meth A,2012,695(1):317.
    [53] MIYAKE K K,MATSUMOTO K,INOUE M,et al.Journal of Nuclear Medicine,2014,55(7):1198.
    [54] OMURA T,MORIYA T,YAMADA R,et al.Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC),2012 IEEE,2012:3560.
    [55] BAO Q,NEWPORT D,CHEN M,et al.Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2009,50(3):401.
    [56] CIPRIAN C,WU Y,JUDENHOFER M S,et al.Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2006,47(12):1968.
    [57] PICHLER B J,JUDENHOFER M S,CIPRIAN C,et al.Journal of Nuclear Medicine,2006,47(4):639.
    [58] JUDENHOFER M,WEHRL H D,CATANA C,et al.Nature Medicine,2008,14(4):459.
    [59] CIPRIAN C,DANIEL P,WU Y,et al.Proceedings of the National Academy of Sciences,2008,105(10):3705.
    [60] SEⅡCHI Y,MASAO I,YASUKAZU K,et al.Annals of Nuclear Medicine,2010,24(2):89.
    [61] ISTVAN S,JANE M,GERGELY P,et al.Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2011,52(11):1741.
  • [1] 刘凌, 祁辉荣, 代洪亮, 温志文, 原之洋, 王海云, 张建, 欧阳群, 邵剑雄.  散裂中子源高气压二维位置灵敏3He探测器的实验研究 . 原子核物理评论, 2019, 36(3): 351-356. doi: 10.11804/NuclPhysRev.36.03.351
    [2] 李卫敏, 马占文, 彭少华, 韩超, 白晓厚, 姚泽恩.  基于微通道板的二维位置灵敏像探测器X射线成像研究 . 原子核物理评论, 2019, 36(2): 218-223. doi: 10.11804/NuclPhysRev.36.02.218
    [3] 刘川凤, 周晓娟, 周健荣, 鲁黎明, 朱林, 何聪, 谭莹莹, 许虹, 谢宇广, 王晓冬, 吴金杰, 陈元柏, 孙志嘉.  THGEM探测器X光斑寻迹和位置分辨实验研究 . 原子核物理评论, 2018, 35(1): 61-65. doi: 10.11804/NuclPhysRev.35.01.061
    [4] 王文明, 吴海成, 刘萍, 张环宇.  一维快装置中心反应率模拟计算的灵敏度和不确定度分析 . 原子核物理评论, 2017, 34(3): 598-603. doi: 10.11804/NuclPhysRev.34.03.598
    [5] 杨磊, 王柱生, 李占奎, 刘凤琼, 王秀华, 陈翠红, 李海霞, 李荣华, 戎欣娟, 祖凯玲, 李春燕, 卢子伟.  ZnO 紫外探测器的研究 . 原子核物理评论, 2015, 32(1): 69-72. doi: 10.11804/NuclPhysRev.32.01.069
    [6] 张斌, 赵书俊.  PET探测器技术的新进展 . 原子核物理评论, 2012, 29(3): 259-265. doi: 10.11804/NuclPhysRev.29.03.259
    [7] 鲁辰桂, 段利敏, #, 杨贺润, 马朋, 唐述文, 耿朋, 胡荣江, 张金霞, 李祖玉.  MICROMEGAS探测器初步测试 . 原子核物理评论, 2011, 28(1): 68-70. doi: 10.11804/NuclPhysRev.28.01.068
    [8] 王 伟, 于得洋, #, 佘乾顺, 徐治国, 陈婧, 苏弘, 蔡晓红, #.  64通道一维位置灵敏电流分布探测器及其数据获取系统 . 原子核物理评论, 2010, 27(2): 174-177. doi: 10.11804/NuclPhysRev.27.02.174
    [9] 韦峥, 李昊翔, 张毅, 汪珊珊, 胡碧涛, #.  Micromegas中子探测器位置分辨特性的Monte-Carlo研究(英文) . 原子核物理评论, 2010, 27(3): 291-295. doi: 10.11804/NuclPhysRev.27.03.291
    [10] 李如荣, 郭洪生, 胡清元, 李忠宝, 张建华.  γ探测器中子灵敏度标定技术 . 原子核物理评论, 2010, 27(2): 178-181. doi: 10.11804/NuclPhysRev.27.02.178
    [11] 胡强, 李加兴.  双维位置灵敏CsI(Tl)闪烁探测器 . 原子核物理评论, 2008, 25(1): 52-55. doi: 10.11804/NuclPhysRev.25.01.052
    [12] 刘萍, 赵志祥.  ADS系统中少錒系核素的灵敏度分析 . 原子核物理评论, 2004, 21(1): 70-72. doi: 10.11804/NuclPhysRev.21.01.070
    [13] 荣健, 刘桂生.  快堆有效增殖因子的灵敏度分析 . 原子核物理评论, 2002, 19(3): 352-356. doi: 10.11804/NuclPhysRev.19.03.352
    [14] 叶邦角, S.Tsuno, T.Kobayashi.  TGC测器的γ灵敏度测量 . 原子核物理评论, 2001, 18(2): 96-100. doi: 10.11804/NuclPhysRev.18.02.096
    [15] 路秀琴, 符长波, 郭继宇, 赵葵, 梁刚, 李淑媛, 刘建成, 姜华.  表面高分辨弹性反冲探测分析 . 原子核物理评论, 2000, 17(4): 228-230. doi: 10.11804/NuclPhysRev.17.04.228
    [16] 焦洪震.  非晶硅辐射探测器 . 原子核物理评论, 1995, 12(1): 40-43. doi: 10.11804/NuclPhysRev.12.01.040
    [17] 袁双贵.  固体β射线探测器及其应用 . 原子核物理评论, 1994, 11(3): 50-52. doi: 10.11804/NuclPhysRev.11.03.050
    [18] 王柱生, 李存藩, 赵荣璞.  较大面积厚灵敏层金硅面垒探测器及其应用 . 原子核物理评论, 1991, 8(2): 45-47. doi: 10.11804/NuclPhysRev.08.02.045
    [19] 田宇宏.  全反射X荧光分析技术(TRXF)——一种新的高灵敏度元素分析技术 . 原子核物理评论, 1991, 8(2): 41-44. doi: 10.11804/NuclPhysRev.08.02.041
    [20] 张玉成.  气体探测器的最新应用 . 原子核物理评论, 1989, 6(4): 11-15. doi: 10.11804/NuclPhysRev.06.04.011
  • 加载中
计量
  • 文章访问数:  577
  • HTML全文浏览量:  36
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-02
  • 修回日期:  2015-11-17
  • 刊出日期:  2016-09-20

高分辨率及高灵敏度小动物PET研究进展

doi: 10.11804/NuclPhysRev.33.03.336
    基金项目:  国家自然科学基金资助项目(81527804,11575285,81401410);深圳市基础研究项目(JCYJ20140417113430558,JCYJ-20150630114942310)
    作者简介:

    邝忠华(1989-),男,湖南新田人,硕士研究生,从事检测技术与自动化装置研究;E-mail:kuangzhonghua@126.com

    通讯作者: 杨永峰,E-mail:yf.yang@siat.ac.cn
  • 中图分类号: R318.6

摘要: 作为一种高灵敏度且具有定量测量能力的功能分子影像技术,小动物PET越来越广泛地用于各种生物医学研究,例如疾病动物模型研究、新药物研发和新治疗方法评估等。首先回顾小动物PET成像系统的发展历史、效率和空间分辨率等性能的改进和产业化;其次,讨论了影响PET空间分辨率和效率的各种因素,包括晶体大小、探测器几何、正电子射程、光子非共线效应、图像重建算法和阻碍PET系统同时达到高空间分辨率和高效率的相互作用深度不确定效应;最后,介绍了小动物PET成像系统在以下几个方面的取得的最新进展:(1)高密度、小的光衰减常数和高光产额的闪烁晶体;(2)体积小、增益大、时间性能好、工作电压低和磁兼容的新型硅光电倍增管光探测器;(3)各种深度测量PET探测器,详细介绍了一个可达到分辨0.43 mm×0.43 mm×20 mm晶格和达到2.4 mm深度分辨率的双端读出探测器;(4)使用深度测量探测器的小动物PET成像系统,详细介绍了一个使用高分辨率双端读出探测器,全视野达到0.55 mm平均位置分辨率的小动物PET原型系统;(5)磁兼容插件式小动物PET成像系统和PET/MRI同时成像的优点;(6)小动物PET图像重建和数据校正的特点、传统的滤波反投影算法和新的迭代算法的优缺点和PET图像重建算法未来的发展方向。

As the most sensitive and quantitative molecular imaging technique,small animal positron emission tomography (PET) has become a widely used tool in biomedical research such as in animal model of human disease,development of new drugs and the evaluation of new therapeutics.In this paper,first the history,the efforts to improve the spatial resolution and sensitivity as well as the commercialization process of small animal PET scanner are reviewed.Then the factors that affect the spatial resolution and sensitivity of PET scanner such as crystal size,detector geometry,positron range,photon noncollinearity and imaging reconstruction are discussed in detail.The depth of interaction effect which hinders the simultaneous achievement of PET spatial resolution and sensitivity are also discussed.Finally the recent progress made in the following areas of small animal PET instrumentation are introduced:(1) high density,short light decay constant and bright scintillator,(2) compact,high gain,good timing resolution,low bias voltage and MRI compatible silicon photomultiplier,(3) depth encoding detectors by using different methods,a detector using dual-ended readout,identifying 0.43 mm×0.43 mm×20 mm crystals and achieving a 2.4 mm depth of interaction resolution was introduced in detail,(4) small animal PET scanners using depth encoding detectors,a prototype scanner using high resolution dualended readout detectors and achieving an average of 0.55 mm spatial resolution in the whole field of view was introduced in detail.(5) MRI compatible small animal PET inserts and the advantage of simultaneous PET/MRI imaging,(6) image reconstruction and data correction of small animal PET,the filter back projection and iterative reconstruction algorithms are compared and a few key directions of PET image reconstruction will be presented.

English Abstract

邝忠华, 李成, 李兰君, 胡战利, 张玲, 谭思晴, 张健, 胡启斌, 王晓辉, 杨永峰. 高分辨率及高灵敏度小动物PET研究进展[J]. 原子核物理评论, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
引用本文: 邝忠华, 李成, 李兰君, 胡战利, 张玲, 谭思晴, 张健, 胡启斌, 王晓辉, 杨永峰. 高分辨率及高灵敏度小动物PET研究进展[J]. 原子核物理评论, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
KUANG Zhonghua, LI Cheng, LI Lanjun, HU Zhanli, ZHANG Ling, TAN Siqing, ZHANG Jian, HU Qibin, WANG Xiaohui, YANG Yongfeng. Progress of Small Animal PET Scanners with High Spatial Resolution and High Sensitivity[J]. Nuclear Physics Review, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
Citation: KUANG Zhonghua, LI Cheng, LI Lanjun, HU Zhanli, ZHANG Ling, TAN Siqing, ZHANG Jian, HU Qibin, WANG Xiaohui, YANG Yongfeng. Progress of Small Animal PET Scanners with High Spatial Resolution and High Sensitivity[J]. Nuclear Physics Review, 2016, 33(3): 336-344. doi: 10.11804/NuclPhysRev.33.03.336
参考文献 (61)

目录

    /

    返回文章
    返回

    0c94a376f9d14ae7919693216cfdfff6.jpg