Processing math: 100%
Advanced Search
Ming LU, Feng PAN, Didi LUO, Chunlong LI, Shuai WU, Tongtong ZHU, Qingwei CHU, Shichun HUANG, Andong WU, Teng TAN, Hao GUO. Study on Nb3Sn Coating Technology of 1.3 GHz Superconducting Cavity by Electrochemical Bronze Method[J]. Nuclear Physics Review, 2023, 40(1): 51-57. DOI: 10.11804/NuclPhysRev.40.2022031
Citation: Ming LU, Feng PAN, Didi LUO, Chunlong LI, Shuai WU, Tongtong ZHU, Qingwei CHU, Shichun HUANG, Andong WU, Teng TAN, Hao GUO. Study on Nb3Sn Coating Technology of 1.3 GHz Superconducting Cavity by Electrochemical Bronze Method[J]. Nuclear Physics Review, 2023, 40(1): 51-57. DOI: 10.11804/NuclPhysRev.40.2022031

Study on Nb3Sn Coating Technology of 1.3 GHz Superconducting Cavity by Electrochemical Bronze Method

Funds: National Natural Science Foundation of China(12075295)
More Information
  • Corresponding author:

    Hao GUO, E-mail: guohao@impcas.ac.cn

  • Received Date: March 10, 2022
  • Revised Date: April 05, 2022
  • Superconducting RF cavities have been widely used in modern accelerators because of their advanced characters, such as high quality factor, large beam aperture etc. After years of development, the performance of bulk Nb cavity is close to the material's theoretical limit. Using Nb3Sn thin film cavities to replace current bulk Nb cavities could be a viable way to break such limit. Because of its high superconducting transition temperature and superheating magnetic field, Nb3Sn can elevate both the working temperature and the acceleration gradient of the SRF cavities. Currently, there are several preparation methods of Nb3Sn thin films under development. Among them, Nb3Sn thin films with decent performance were successfully prepared on the inner surface of Nb cavity by tin vapor diffusion method. However, because the reaction temperature is above 1 100 °C, tin vapor diffusion method cannot get rid of bulk niobium substrate, so it inevitably has defects in mechanical stability, thermal conductivity and other aspects, which is difficult to meet the application of high reliability accelerator in the future. Bronze method have been successfully used for Nb3Sn cable preparation. The maximum heat treatment temperature of this method is under 700 °C, which can potentially be applied to copper-based Nb3Sn thin film cavity preparation. In addition, electrochemical coating method is also considered because of its advantages, such as low cost, easy control of reaction process, normal temperature and pressure. In this work, we combined the advantages of above two methods. Specifically, on 1.3 GHz Nb based cavity, bronze precursor films were prepared by electrochemical plating firstly, and then were heated to synthesize Nb3Sn thin film by annealing. The vertical test results show that the intrinsic Q0 of the film cavity at 4.2 K is about 6×108 and still has a lot of room for improvement.
  • [1]
    GODEKE A. Superconductor Science Technology, 2006, 19(8): R68. DOI: 10.1088/0953-2048/19/8/R02
    [2]
    KECKERT S, BUCK T, HALL D, et al. Superconductor Science and Technology, 2019, 32(7): 075004. DOI: 10.1088/1361-6668/ab119e
    [3]
    POSEN S, HALL D L. Superconductor Science and Technology, 2017, 30(3): 033004. DOI: 10.1088/1361-6668/30/3/033004
    [4]
    PUDASAINI U, EREMEEV G, REECE C, et al. Superconductor Science and Technology, 2019, 32(4): 045008. DOI: 10.1088/1361-6668/aafa88
    [5]
    PERPEET M, HEIN M A, MULLER G, et al. Journal of Applied Physics, 1997, 82(10): 5021. DOI: 10.1063/1.366372
    [6]
    XIAO L, LU X, YANG Z, et al. Physica C Superconductivity, 2021(6): 1353894.
    [7]
    SAYEED M N, PUDASAINI U, REECE C E, et al. Journal of Alloys and Compounds, 2019, 800: 272. DOI: 10.1016/j.jallcom.2019.06.017
    [8]
    TAN W, MA R, PAN H, et al. Physica C Superconductivity, 2020, 576: 1353667. DOI: 10.1016/j.physc.2020.1353667
    [9]
    ILYINA E A, ROSAZ G, DESCARREGA J B, et al. Superconductor Science and Technology, 2019, 32(3): 035002. DOI: 10.1088/1361-6668/aaf61f
    [10]
    KOSKY P, PETERS H, SPIRO C, et al. Cryogenics, 1994, 34(9): 753. DOI: 10.1016/0011-2275(94)90162-7
    [11]
    PARRELL J A, ZHANG Y, FIELD M B, et al. IEEE Transactions on Appiled Superconductivity, 2003, 13(2): 3470. DOI: 10.1109/TASC.2003.812360
    [12]
    BARZI E, MOIO S, ZLOBIN A. Effect of Subelement Size, Strand Size and rrr on Stability of rrp Nb3Sn Wires[C]//APS March Meeting, 2013.
    [13]
    SUENAGA M, GHOSH A K, XU Y, et al. Phys Rev Lett, 1991, 66(13): 1777. DOI: 10.1103/PhysRevLett.66.1777
    [14]
    BARZI E, BESTETTI M, REGINATO F, et al. Superconductor Science and Technology, 2015, 29(1): 015009. DOI: 10.1088/0953-2048/29/1/015009
    [15]
    LU M, PAN F, GUO H, et al. Materials Letters, 2021, 292: 129557. DOI: 10.1016/j.matlet.2021.129557
    [16]
    杨传铮, 胡素辉. 金属学报, 1986, 22(5): 47.

    YANG Chuangzheng, HU Suhui. Acta Metallurgica Sinica, 1986, 22(5): 47. (in Chinese)
    [17]
    LIVINGSTON J D. Physica Status Solidi, 2010, 44(1): 295.
    [18]
    SUENAGA, M. Applied Physics Letters, 1983, 43(8): 791. DOI: 10.1063/1.94457
    [19]
    XU X, SUMPTION M. A Model for the Compositions of Nonstoichiometric Intermediate Phases Formed by Diffusion Reactions, and Its Application to Nb3Sn Superconductors[Z]. 2015.
    [20]
    XU X, SUMPTION M, COLLINGS E W. Superconductor Science and Technology, 2013, 26(12): 125006. DOI: 10.1088/0953-2048/26/12/125006
    [21]
    PUDASAINI U L. Growth and Properties of Vapor Diffused Nb3Sn Coating for Superconducting Radiofrequency Accelerator Cavity Applications[Z]. 2020.
    [22]
    YANG Z, GUO H, HE Y, et al. Development of Nb3Sn Cavity Coating at IMP[C]//International Conference on RF Superconductivity: SRF’19. Geneva: JACoW Publishing, 2019: 21.
  • Related Articles

    [1]Li ZHU, Wei WU, Shurong YU, Yuquan CHEN, Enming MEI, Peng MA, Qinggao YAO, Liangting SUN. Optimum Design of the Magnetic Mirror Structure for Testing Nb3Sn Sextupole Coil[J]. Nuclear Physics Review, 2020, 37(4): 854-858. DOI: 10.11804/NuclPhysRev.37.2020034
    [2]XU Guoheng, DUAN Jinglai, WANG Wendan, LIU Jie. Preparation of Single Cu Nanowire and in-situ Study of Its Electrical Properties[J]. Nuclear Physics Review, 2019, 36(1): 91-95. DOI: 10.11804/NuclPhysRev.36.01.091
    [3]LI Jinhai, A. A. Rossi, V. Palmieri. Magnetron Sputtering and Multilayer Deposition of Nb3Sn  Superconducting Thin Film[J]. Nuclear Physics Review, 2015, 32(S1): 59-63. DOI: 10.11804/NuclPhysRev.32.S1.59
    [4]XUE Zhi-hao, SUN You-mei, #, CHANG Hai-long, LIU Jie, HOU Ming-dong, YAO Hui-jun, MO Dan, CHEN Yan-feng. Research on Fabrication Technology of Micropore Array in Silicon Using Electrochemical Etching[J]. Nuclear Physics Review, 2008, 25(3): 277-281. DOI: 10.11804/NuclPhysRev.25.03.277
    [5]YAO Hui-jun, LIU Jie, HOU Ming-dong, SUN You-mei, DUAN Jing-lai, MO Dan. Nanowire Preparation in Ion-track Templates[J]. Nuclear Physics Review, 2006, 23(1): 55-58. DOI: 10.11804/NuclPhysRev.23.01.055
    [6]JIANG Xing-liu, LIU Rui, WANG Huai-yi, LE Xiao-yun, HAN Li-jun, WEN Xiong-wei. Fifteen Years of Cold Fusion[J]. Nuclear Physics Review, 2004, 21(4): 422-424. DOI: 10.11804/NuclPhysRev.21.04.422
    [7]Jiang Xing-liu. Anomalous Nuclear Effects in Deuterium/Solid Systems[J]. Nuclear Physics Review, 1992, 9(1): 40-44. DOI: 10.11804/NuclPhysRev.09.01.040
    [8]牛芳. 放射药物化学——放化研究的一个新领域[J]. Nuclear Physics Review, 1990, 7(1): 45-48. DOI: 10.11804/NuclPhysRev.07.01.045
    [9]R.P.Allen, 张毓亭. 非化学的清除污染技术[J]. Nuclear Physics Review, 1986, 3(3): 38-42. DOI: 10.11804/NuclPhysRev.03.03.038
    [10]李文新. 洛斯阿拉莫斯国家实验室的核化学与放射化学研究[J]. Nuclear Physics Review, 1985, 2(4): 14-16. DOI: 10.11804/NuclPhysRev.02.04.014

Catalog

    Article Metrics

    Article views (890) PDF downloads (211) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return