Advanced Search
Guimei MA, Jie LIU, Jiancheng YANG, Weiping CHAI, Yunpeng ZHU, shuang RUAN. Development and Validation of Lattice Adjustment Application Based on PACS under DC/Pulse Dual-mode[J]. Nuclear Physics Review, 2020, 37(4): 842-847. DOI: 10.11804/NuclPhysRev.37.2019057
Citation: Guimei MA, Jie LIU, Jiancheng YANG, Weiping CHAI, Yunpeng ZHU, shuang RUAN. Development and Validation of Lattice Adjustment Application Based on PACS under DC/Pulse Dual-mode[J]. Nuclear Physics Review, 2020, 37(4): 842-847. DOI: 10.11804/NuclPhysRev.37.2019057

Development and Validation of Lattice Adjustment Application Based on PACS under DC/Pulse Dual-mode

Funds: National Natural Science Foundation of China(11825505)
More Information
  • Corresponding author:

    Jiancheng YANG, E-mail: yangjch@impcas.ac.cn.

  • Received Date: October 31, 2019
  • Revised Date: December 14, 2020
  • To reduce the amount of duplication efforts of physical and program developers, a portable, extensible and maintainable PACS (Physics-oriented Accelerator Control System) is proposed and implemented for heavy ion accelerator facilities by IMP (Institute of Modern Physics, Chinese Academy of Sciences). For testing the feasibility of the PACS, a lattice adjustment application and its new GUI for both DC and pulse modes is programmed by Python language. The DC mode, built with the SQL database and soft IOC of the EPICS, is performed in the HIRFL-CSRe. In addition, the pulse mode is tested in the HIRFL-CSRm. The testing results show that the tune adjustment and optics calculation in the two modes are implemented successfully, and the PACS can provide the interfaces between the modules and layers. Therefore, the framework of the PACS is feasible.
  • [1]
    XIA J W, ZHAN W L, WEI B W, et al. Nucl Instr and Meth A, 2002, 488: 11. DOI: 10.1016/S0168-9002(02)00475-8
    [2]
    MA G M, LIU J, YANG J C, et al. Nucl Instr and Meth A, 2020, 953: 163170. DOI: 10.1016/j.nima.2019.163170
    [3]
    Guido van Rossum. Python[EB/OL]. [2019-09-01]. https://www.python.org/.
    [4]
    CERN-BE/ABP Accelerator Beam Physics Group. MADX [EB/OL]. [2019-09-01]. http://madx.web.cern.ch/madx.
    [5]
    The Qt Company[EB/OL]. [2019-09-01]. https://www.riverbankcomputing.com/PyQt5/.
    [6]
    HUNTER J, DALE D, FIRING E, et al. Matplotlib[EB/OL]. [2019-09-01]. https://matplotlib.org/.
    [7]
    MySQL AB Company. MySQL[EB/OL]. [2019-09-01]. https://www.mysql.com/.
    [8]
    Argonne National laboratory. Experimental Physics and Industrial Control System[EB/OL]. [2019-09-01]. https://epics.anl.gov/.
  • Related Articles

    [1]Yuanzhuo MA, Bingnan LÜ, Ning LI, Qian WANG. Perturbation Calculation of Charge Radii in Nuclear Lattice Effective Field Theory[J]. Nuclear Physics Review, 2024, 41(1): 172-177. DOI: 10.11804/NuclPhysRev.41.2023CNPC77
    [2]Yue SU, Longcheng GUI, Jian LIANG. The Study of Glueball in Lattice QCD[J]. Nuclear Physics Review, 2023, 40(2): 198-206. DOI: 10.11804/NuclPhysRev.40.2022094
    [3]Wenhao ZHANG. Lattice QCD Calculation of the Form Factor by Interpolation within Finite Volume[J]. Nuclear Physics Review, 2021, 38(2): 136-146. DOI: 10.11804/NuclPhysRev.38.2021010
    [4]Zhe LI, Liuming LIU. Generate Configurations for Lattice QCD Study[J]. Nuclear Physics Review, 2021, 38(2): 129-135. DOI: 10.11804/NuclPhysRev.38.2021022
    [5]Shengtai LI, Hengtong DING. Chiral Crossover and Chiral Phase Transition Temperatures from Lattice QCD[J]. Nuclear Physics Review, 2020, 37(3): 674-678. DOI: 10.11804/NuclPhysRev.37.2019CNPC65
    [6]HU Jinniu, SHEN Hong, TOKI Hiroshi. Relativistic Effects in Nuclear Matter with Lattice NN Potential[J]. Nuclear Physics Review, 2017, 34(3): 505-508. DOI: 10.11804/NuclPhysRev.34.03.505
    [7]WANG Kun, SONG Mingtao, ZHANG Jinquan, SHENG Lina. Lattice Design of a FFAG Accelerator for Boron Neutron Capture Therapy[J]. Nuclear Physics Review, 2014, 31(1): 32-36. DOI: 10.11804/NuclPhysRev.31.01.032
    [8]XU Wang, LUO Wen, HUANG Bo-song, AN Zhen-dong, LI Yong-jiang, YANG Li-feng, FAN Gong-tao, YAN Zhe, XU Ben-ji, CAI Xiao-lu, PAN Qiang-yan, FAN Guang-wei. Adjustable LCS γ Source SINAP-III[J]. Nuclear Physics Review, 2012, 29(3): 253-258. DOI: 10.11804/NuclPhysRev.29.03.253
    [9]YE Yan-lin, YING Jun, CHEN Tao. Development of Object oriented Software Technique in Field of High Energy and Nuclear Physics[J]. Nuclear Physics Review, 1997, 14(2): 125-129. DOI: 10.11804/NuclPhysRev.14.02.125
    [10]W.Busse, 刘瑞. 现代加速器控制系统的优点和局限[J]. Nuclear Physics Review, 1984, 1(2): 22-25. DOI: 10.11804/NuclPhysRev.01.02.022
  • Cited by

    Periodical cited type(1)

    1. 刘福宝,杨建成,夏佳文,刘杰,马桂梅,朱云鹏. SESRI 300 MeV加速器全装置高精度同步性自动化监测系统研究. 原子核物理评论. 2024(02): 647-652 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (811) PDF downloads (39) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return