Advanced Search
HE Houjun, HAN Yuncheng, WANG Xiaoyu, REN Lei, MENG Xiangdong, ZHENG Mingjie. Fabrication of a 4H-SiC Betavoltaic Battery with Integrated Tritiated Titanium Source[J]. Nuclear Physics Review. DOI: 10.11804/NuclPhysRev.42.2024044
Citation: HE Houjun, HAN Yuncheng, WANG Xiaoyu, REN Lei, MENG Xiangdong, ZHENG Mingjie. Fabrication of a 4H-SiC Betavoltaic Battery with Integrated Tritiated Titanium Source[J]. Nuclear Physics Review. DOI: 10.11804/NuclPhysRev.42.2024044

Fabrication of a 4H-SiC Betavoltaic Battery with Integrated Tritiated Titanium Source

Funds: The Joint Funds of the National Natural Science Foundation of China (U2436201); National Natural Science Foundation of China (12305382); Directors Fund of Hefei Institute of Physical Sciences, Chinese Academy of Sciences (YZJJ202311-TS); Science and Technology Research Youth Project of Jiangxi Provincial Department of Education (GJJ200763); Research Project on Laboratory and Equipment Management in Jiangxi Provincial Higher Education Institutions (Z20JXS0001)
More Information
  • Corresponding author:

    HAN Yuncheng, E-mail: yuncheng.han@inest.cas.cn

  • Received Date: May 16, 2024
  • Revised Date: June 25, 2024
  • Available Online: March 16, 2025
  • To enhance the performance of betavoltaic batteries, we investigated the effects of depletion region width, diffusion length, and electrode structure on output power. By optimizing the design and improving the fabrication processes of radioisotope source thickness, converter structure, and electrodes, we successfully developed a tritiated titanium-SiC-based betavoltaic battery with the form of integrated radioisotope source and converter. Compared to the test results using a discrete tritiated titanium and a converter, the integrated approach of tritiated titanium and the converter significantly improved the output performance of the betavoltaic battery, achieving a maximum output power of 21.4 nW. This performance is among the highest reported for similar betavoltaic batteries. This work provides a valuable reference for developing high-performance betavoltaic batteries.

  • [1]
    THOMAS C, PORTNOFF S, SPENCER M G. Appl Phys Lett, 2016, 108(1): 013505. DOI: 10.1063/1.4939203
    [2]
    ZHAO C, LIAO F, LIU K, et al. Appl Phys Lett, 2021, 119(15): 153904. DOI: 10.1063/5.0068269
    [3]
    OLSEN L C, CABAUY P, ELKIND B J. Phys Today, 2012, 65(12): 35. DOI: 10.1063/pt.3.1820
    [4]
    OLSEN L C. Review of betavoltaic energy conversion. NASA. Lewis Research Center, Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12), 1993.
    [5]
    ZHANG Q, CHEN R B, SAN H S, et al. 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 2015, 1909. DOI: 10.1109/TRANSDUCERS.2015.7181324.
    [6]
    GAO H, LUO S, ZHANG H, et al. Energy, 2013, 51 116. DOI: 10.1016/j.energy.2012.12.042.
    [7]
    MAXIMENKO S I, MOORE J E, AFFOUDA C A, et al. Sci Rep, 2019, 9(1): 10892. DOI: 10.1038/s41598-019-47371-6
    [8]
    LI X Y, REN Y, CHEN X J, et al. J Radioanal Nucl Ch, 2011, 287(1): 173. DOI: 10.1007/s10967-010-0746-7
    [9]
    RAPPAPORT P. Phys Rev, 1954, 93(1): 246. DOI: 10.1103/PhysRev.93.246.2
    [10]
    KRASNOV A A, LEGOTIN S A. Instrum Exp Tech, 2020, 63(4): 437. DOI: 10.1134/s0020441220040156
    [11]
    LIU Y M, LU J B, LI X Y, et al. Nucl Sci Tech, 2018, 29(11): 168. DOI: 10.1007/s41365-018-0494-x
    [12]
    GORBATSEVICH A A, DANILIN A B, KORNEEV V I, et al. Tech Phys, 2016, 61(7): 1053. DOI: 10.1134/S1063784216070148
    [13]
    CHENG Z, SAN H, LI Y, et al. 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, 2010, 582. DOI: 10.1109/NEMS.2010.5592469
    [14]
    MUNSON C E, GAIMARD Q, MERGHEM K, et al. J Phys D Appl Phys, 2018, 51(3): 035101. DOI: 10.1088/1361-6463/aa9e41
    [15]
    ZHAO C, LEI L, LIAO F Y, et al. Appl Phys Lett, 2020, 117(26): 263901. DOI: 10.1063/5.0033052
    [16]
    ZHAO C, LIU A, BAI S, et al. Appl Phys Lett, 2020, 117(19): 193901. DOI: 10.1063/5.0028450
    [17]
    CHANDRASHEKHAR M, THOMAS C I, LI H, et al. Appl Phys Lett, 2006, 88(3): 033506. DOI: 10.1063/1.2166699
    [18]
    CHANDRASHEKHAR MVS T C, LI H, SPENCER M G. Materials Science Forum, 2006, 527. DOI: 10.4028/www.scientific.net/msf.527-529.1351
    [19]
    GUO H, SHI Y, ZHANG Y, et al. Fabrication of SiC p-i-n Betavoltaic Cell with 63Ni Irradiation Source[C]// 2011 IEEE International Conference of Electron Devices and Solid-State Circuits, Tianjin, China. New York: IEEE, 2011.
    [20]
    CHEU D S L. Optimization and Evaluation of Tritium Storage Mediums for Betavoltaic Devices[D]. West Lafayette: Purdue University Graduate School, 2023(10.25394/PGS. 22684669. v1.
    [21]
    LIU Y, HU R, YANG Y, et al. Appl Radiat Isot, 2012, 70(3): 438. DOI: 10.1016/j.apradiso.2011.10.013
    [22]
    张佳辰. 宽禁带半导体辐射伏特式核电池设计与关键工艺研究[D]. 合肥: 中国科学技术大学, 2023(5): 134. DOI: 10.27517/d.cnki.gzkju.2023.001059.

    ZHANG Jiachen. The design and fabrication of betavoltaic battery based on wide bandgap semiconductors[D]. Hefei: University of Science and Technology of China, 2023 (in Chinese) .
    [23]
    SVINTSOV A, KRASNOV A, POLIKARPOV M, et al. Appl Radiat Isot, 2018, 137 184. DOI: 10.1016/j.apradiso.2018.04.010.
    [24]
    HE H J, HAN Y C, WANG X Y, et al. Nucl Sci Tech, 2023, 34(12): 181. DOI: 10.1007/s41365-023-01331-y
    [25]
    TANG X B, LIU Y P, DING D, et al. Sci China Tech, 2012, 55(3): 659. DOI: 10.1007/s11431-011-4739-8

Catalog

    Article Metrics

    Article views (31) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return