Development of Detection System for (3He, t) Charge Exchange Reaction Experiment in Inverse Kinematics
-
Graphical Abstract
-
Abstract
Charge exchange reactions with the intermediate energy can be used to study the complex structure of atomic nuclei from the respect of spin-isospin excitation. By utilizing the radioactive beam line at the Institute of Modern Physics, Chinese Academy of Sciences, charge exchange reaction experiments in inverse kinematics can expand the target nuclides to be studied to neutron-rich nuclei and even unstable nuclei. Based on this, a detector system for charge exchange reaction experiments has been designed, which mainly consists of a 3He gas target, TPC and CsI(Tl) arrays, where the TPC and CsI(Tl) arrays form a ΔE-E system. Using simulation software such as Geant4 and Garfield++, the operating conditions of the TPC were optimized, the kinematic intervals and the basic design of the detector for the experimental study were determined, and the particle discrimination ability of the detection system was investigated. Based on the simulation, the detection system was built and the spatial resolution of the TPC was measured by using the UV laser. On the readout electrode plane, the resolution is about 422 μm. And the resolution is about 681 μm in the drift direction. The performance of the TPC is sufficient to support the track reconstruction of the secondary particles of the nuclear reaction, and in particular, it is able to achieve a high resolution of the scattering angle.
-
-