Advanced Search
Bo ZHANG, Yao YANG, Yu TANG, Yuhan ZHAI, Huanyu ZHAO. Beam Dynamic Design of IH-DTL with Built-in Permanent Magnet Quadrupole Lens[J]. Nuclear Physics Review, 2023, 40(4): 534-540. DOI: 10.11804/NuclPhysRev.40.2022025
Citation: Bo ZHANG, Yao YANG, Yu TANG, Yuhan ZHAI, Huanyu ZHAO. Beam Dynamic Design of IH-DTL with Built-in Permanent Magnet Quadrupole Lens[J]. Nuclear Physics Review, 2023, 40(4): 534-540. DOI: 10.11804/NuclPhysRev.40.2022025

Beam Dynamic Design of IH-DTL with Built-in Permanent Magnet Quadrupole Lens

Funds: National Natural Science Foundation of China(11722547); Key Program in Frontier Science of the Chinese Academy of Sciences(QYZDB-SSW-SLH041)
More Information
  • Corresponding author:

    Huanyu ZHAO, E-mail: zhaohy@impcas.ac.cn

  • Received Date: February 24, 2023
  • Revised Date: June 23, 2023
  • Based on KONUS dynamics, the beam dynamic design of a compact IH-DTL with built-in permanent magnet quadrupole lens was completed. The DTL consists 37 acceleration cells and two sets of permanent magnet quadrupole lenses, enabling the acceleration of C6+ ion beam of 20 emA from 0.5 MeV/u to 4.0 MeV/u. Throughout the design process, significant focus was placed on optimizing the voltage of the acceleration gap, the parameters of the quadrupole magnet, the phase setting of the beam injection, and the energy and phase setting of the 0-degree reference particle to control the transverse and longitudinal emittance growth of the high-current ion beam in the low-energy range. Consequently, transverse normalized RMS acceptance of the IH-DTL reaches 0.37 πmm · mrad, and the transmission efficiency exceeds 95%.
  • [1]
    HASEROTH H, KUGLER H, LANGBEIN K, et al. Review of Scientific Instruments, 1998, 69(2): 1051. DOI: 10.1063/1.1148630
    [2]
    FOURNIER P, GREGOIRE G, KUGLER H, et al. Review of Scientific Instruments, 2000, 71(2): 924. DOI: 10.1063/1.1150347
    [3]
    SHARKOV B Y, KONDRASHEV S, ROUDSKOY I, et al. LReview of Scientific Instruments, 1998, 69(2): 1035. DOI: 10.1063/1.1148531
    [4]
    IKEDA S, OKAMURA M, KANESUE T, et al. Review of Scientific Instruments, 2020, 91(2): 023304. DOI: 10.1063/1.5128421
    [5]
    ZHAO H, ZHANG J, JIN Q, et al. Review of Scientific Instruments, 2016, 87(2): 02A917. DOI: 10.1063/1.4937115
    [6]
    谢修璀. 医用重离子加速器HIMM注入方案的设计研究 [D]. 兰州: 中国科学院研究生院(近代物理研究所), 2014.

    XIE Xiucui. Design Study of Injection Scheme for Medical Heavy Ion Accelerator HIMM [D]. Lanzhou: Graduate University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2014. (in Chinese)
    [7]
    MARTI F. Heavy Ion Strippers [C]//LINAC2012, Seoul, South Korea, Geneva: JACoW Publishing, 2012.
    [8]
    NOLEN J A, MARTI F. Reviews of Accelerator Science and Technology, 2013, 6: 221. DOI: 10.1142/S1793626813300107
    [9]
    IWATA Y, YAMADA S, MURAKAMI T, et al. Nucl Instr and Meth A, 2006, 569(3): 685. DOI: 10.1016/j.nima.2006.09.057
    [10]
    WANG B, HAO H, VOROZHTSOV S, et al. Physics of Particles and Nuclei Letters, 2012, 9(3): 288. DOI: 10.1134/S1547477112030053
    [11]
    SCHLITT B. Commissioning and Operation of the Injector linacs for HIT and CNAO [C]. Proc LINAC08, 2008: 720.
    [12]
    IWATA Y, YAMADA S, MURAKAMI T, et al. Nucl Instr and Meth A, 2007, 572(3): 1007. DOI: 10.1016/j.nima.2007.01.012
    [13]
    VORMANN H, SCHLITT B, CLEMENTE G, et al. Status of the Linac Components for the Italian Hadrontherapy Centre CNAO [C]//2012EPAC08, Genoa, Italy. 2008.
    [14]
    BING, WANG, HUANFENG, et al. Physics of Particles & Nuclei Letters, 2012, 9:471.
    [15]
    SAKO T, YAMAGUCHI A, SATO K, et al. Review of Scientific Instruments, 2016, 87(2): 02C109. DOI: 10.1063/1.4935975
    [16]
    张博. 基于激光离子源的紧凑型注入器的实验研究及其DTL设计 [D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2022.

    ZHANG Bo. Experimental Study of Compact Injector Based on Laser Ion Source and ITs DTL Design [D]. Lanzhou: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences). 2022. (in Chinese)
    [17]
    RATZINGER U, TIEDE R. S. Nucl Instr and Meth A, 1998, 415(1-2): 229. DOI: 10.1016/S0168-9002(98)00389-1
    [18]
    RATZINGER U. Effiziente Hochfrequenz-Linearbeschleuniger für leichte und schwere Ionen [D]. Frankfurt: Goethe University Frankfurt, 1998.
    [19]
    RATZINGER U, HÄHNEL H, TIEDE R, et al. Physical Review Accelerators and Beams, 2019, 22(11): 114801. DOI: 10.1103/PhysRevAccelBeams.22.114801
    [20]
    BLEWETT M H. Physics Today, 1956, 9(11): 18. DOI: 10.1063/1.3059815
    [21]
    RATZINGER U. H-type linac structures [M]. Geneva: Cern Accelerator School, 2005.
    [22]
    GOOD M L. Physical Review, 1952, 85(4): 556.
    [23]
    TIEDE R, SAUER A C, PODLECH H, et al. LORASR code development [C]// Proceedings of EPAC 2006, Edinburgh, Scotland. 2006: WEPCH118.
    [24]
    杜衡, 原有进, 殷学军, 等. 原子核物理评论, 2018, 35(1): 34. DOI: 10.11804/NuclPhysRev.35.01.034

    DU Heng, YUAN Youjin, YIN Xuejun, et al. Nuclear Physics Review, 2018, 35(1): 34. (in Chinese) DOI: 10.11804/NuclPhysRev.35.01.034
    [25]
    BORBURGH J. 3-Dimensional finite element calculations on septum magnets with opera3d [R]. Geneva: CERN-PS Division, 1997.
    [26]
    DUPERRIER R, PICHOFF N, URIOT D. CEA Saclay Codes Review for High Intensities Linacs Computations [M]. Berlin Heidelberg: Springer, 2002.
    [27]
    TANG R, XING Q, ZHENG S, et al. Nucl Instr and Meth A, 2019, 920: 50. DOI: 10.1016/j.nima.2018.10.125

Catalog

    Article Metrics

    Article views (455) PDF downloads (167) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return