Advanced Search
Wennian LIU, Shiwen MA, Xinjun ZHAO, Wenxuan ZHANG. The Running Form of Binding Energy Correction for MIT Bag Model[J]. Nuclear Physics Review, 2022, 39(3): 296-301. DOI: 10.11804/NuclPhysRev.39.2022049
Citation: Wennian LIU, Shiwen MA, Xinjun ZHAO, Wenxuan ZHANG. The Running Form of Binding Energy Correction for MIT Bag Model[J]. Nuclear Physics Review, 2022, 39(3): 296-301. DOI: 10.11804/NuclPhysRev.39.2022049

The Running Form of Binding Energy Correction for MIT Bag Model

Funds: National Natural Science Foundation of China(22163011); Xinjiang Natural Science Foundation Joint Fund Project (2019D01C333)
More Information
  • Corresponding author:

    Wenxuan ZHANG, E-mail: zhangwx89@outlook.com

  • Received Date: April 13, 2022
  • Revised Date: May 18, 2022
  • Recently, Ref. [1] introduced a running form of strongly coupled constant and heavy quark binding energies for MIT bag model, and better calculated all confirmed ground state hadron spectra. Considering that one contribution of binding energy is short-range binding between heavy quark, that is, chromoelectric interaction, a running form will replace the previous fitting parameters. This running form is coulombic potential, which varies with the bag radius R and participates in the variation of mass formula. The results show that the introduction of the chromoelectric interaction will also control the mass error within the approximate 40 MeV, and obtain more accurate results compared with the method of fitting parameters. This provides a reference for the exploration of the chromoelectric interaction between heavy quarks.
  • [1]
    ZHANG W X, XU H, JIA D. Phys Rev D, 2021, 104(11): 114011. DOI: 10.1103/PhysRevD.104.114011
    [2]
    AAIJ R, ADEVA B, ADINOLFI M, et al. Phys Rev Lett, 2017, 119(11): 112001. DOI: 10.1103/PhysRevLett.119.112001
    [3]
    CHEN H X, CHEN W, LIU X, et al. Rept Prog Phys, 2017, 80(7): 076201. DOI: 10.1088/1361-6633/aa6420
    [4]
    LIU Y R, CHEN H X, CHEN W, et al. Prog Part Nucl Phys, 2019, 107: 237. DOI: 10.1016/j.ppnp.2019.04.003
    [5]
    ALI A, LANGE J S, STONE S. Prog Part Nucl Phys, 2017, 97: 123. DOI: 10.1016/j.ppnp.2017.08.003
    [6]
    OLSEN S L, SKWARNICKI T, ZIEMINSKA D. Rev Mod Phys, 2018, 90(1): 015003. DOI: 10.1103/RevModPhys.90.015003
    [7]
    LUO S Q, CHEN K, LIU X, et al. Eur Phys J C, 2017, 77(10): 709. DOI: 10.1140/epjc/s10052-017-5297-4
    [8]
    KARLINER M, ROSNER J L. Phys Rev D, 2014, 90(9): 094007. DOI: 10.1103/PhysRevD.90.094007
    [9]
    KARLINER M, KEREN-ZUR B, LIPKIN H J, et al. Annals Phys, 2009, 324: 2. DOI: 10.1016/j.aop.2008.05.003
    [10]
    KARLINER M, LIPKIN H J. Phys Lett B, 2006, 638: 221. DOI: 10.1016/j.physletb.2006.05.032
    [11]
    KARLINER M, NUSSINOV S. JHEP, 2013, 07: 153. DOI: 10.1007/JHEP07(2013)153
    [12]
    CHEN H X, CHEN W, LIU X, et al. arXiv: 2204.02649, 2022.
    [13]
    JOHNSON K. Acta Phys Polon B, 1975, 6: 865.
    [14]
    DEGRAND T A, JAFFE R L, JOHNSON K, et al. Phys Rev D, 1975, 12: 2060. DOI: 10.1103/PhysRevD.12.2060
    [15]
    CHODOS A, JAFFE R L, JOHNSON K, et al. Phys Rev D, 1974, 10: 2599. DOI: 10.1103/PhysRevD.10.2599
    [16]
    WANG G J, CHEN R, MA L, et al. Phys Rev D, 2016, 94(9): 094018. DOI: 10.1103/PhysRevD.94.094018
    [17]
    BERNOTAS A, SIMONIS V. arXiv: 1209.2900, 2012.
    [18]
    EBERT D, FAUSTOV R N, GALKIN V O, et al. Phys Rev D, 2004, 70: 014018. DOI: 10.1103/PhysRevD.70.014018
    [19]
    FAUSTOV R N, GALKIN V O. Phys Rev D, 2022, 105(1): 014013. DOI: 10.1103/PhysRevD.105.014013
    [20]
    WANG Z G. AAPPS Bull, 2021, 31: 5. DOI: 10.1007/s43673-021-00006-3
    [21]
    YANG G, PING J, ORTEGA P G, et al. Chin Phys C, 2020, 44(2): 023102. DOI: 10.1088/1674-1137/44/2/023102
    [22]
    SILVESTRE-BRAC B. Few Body Syst, 1996, 20: 1. DOI: 10.1007/s006010050028
  • Related Articles

    [1]LIU Wennian, ZHANG Wenxuan, MA Shiwen, ZHAO Xinjun, WANG Liyun. The Mass Spectra of the Strange Hidden Heavy-flavored Tetraquark Under the Hadro-quarkonium Model and the Chromomagentic Interaction Bag Model[J]. Nuclear Physics Review, 2024, 41(4): 949-958. DOI: 10.11804/NuclPhysRev.41.2023084
    [2]GAO Bikai, KOJO Toru, HARADA Masayasu. Parity Doublet Model for Baryon Octets Based on the Quark-line Diagram[J]. Nuclear Physics Review, 2024, 41(3): 794-800. DOI: 10.11804/NuclPhysRev.41.QCS2023.03
    [3]Xiangkun DONG. Threshold Structures in Hadron Spectrum and Hadronic Molecules[J]. Nuclear Physics Review, 2024, 41(1): 156-162. DOI: 10.11804/NuclPhysRev.41.2023CNPC73
    [4]Haosong YOU, Chengjun XIA, Xinmei ZHU, Penghui CHEN, Jianfeng XU, Zhenyan LU, Guangxiong PENG, Renxin XU. Baryon Spectra in the Framework of an Equivparticle Model[J]. Nuclear Physics Review, 2022, 39(3): 302-310. DOI: 10.11804/NuclPhysRev.39.2022111
    [5]Takayuki Matsuki, Dianyong CHEN, Xiang LIU, Qifang LÜ. Magic Mixing Angles for Doubly Heavy Baryons[J]. Nuclear Physics Review, 2021, 38(4): 373-379. DOI: 10.11804/NuclPhysRev.38.2021074
    [6]YU Gongming. 色玻璃凝聚近似下极端相对论重离子碰撞中的双轻子和光子产生(英文)[J]. Nuclear Physics Review, 2016, 33(1): 25-29. DOI: 10.11804/NuclPhysRev.33.01.025
    [7]YUAN Si-gang. Low-lying Seven-quark qqq(q¯q)2 States in Baryon Spectrum[J]. Nuclear Physics Review, 2013, 30(1): 10-16. DOI: 10.11804/NuclPhysRev.30.01.010
    [8]Zou Bing-song. Status of Baryon Spectroscopy and Possible N* rogram at Lanzhou CSR[J]. Nuclear Physics Review, 2003, 20(3): 167-175. DOI: 10.11804/NuclPhysRev.20.03.167
    [9]JIANG Huan-qing. Some Issues in Hardronic Physics[J]. Nuclear Physics Review, 2001, 18(4): 215-218. DOI: 10.11804/NuclPhysRev.18.04.215
    [10]Wang Fan, Ping Jialun, Wu Guanghan, Teng Lijiang. From Baryon Interactions to Dibaryons[J]. Nuclear Physics Review, 1995, 12(2): 13-26. DOI: 10.11804/NuclPhysRev.12.02.013
  • Cited by

    Periodical cited type(1)

    1. 刘文念,张文轩,马奭文,赵新军,王利云. 基于强子-夸克偶素模型和色磁相互作用口袋模型的奇异隐重味四夸克态质量谱. 原子核物理评论. 2024(04): 949-958 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (590) PDF downloads (42) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return