Advanced Search
Lianjun ZHANG, Jianrong ZHOU, Jianqing YANG, Jinhao TAN, Yushou SONG, Zhijia SUN. Monte Carlo Simulation Study on Optimization of Detection Efficiency and Spatial Resolution of Coated nMCP[J]. Nuclear Physics Review, 2021, 38(2): 190-195. DOI: 10.11804/NuclPhysRev.38.2020058
Citation: Lianjun ZHANG, Jianrong ZHOU, Jianqing YANG, Jinhao TAN, Yushou SONG, Zhijia SUN. Monte Carlo Simulation Study on Optimization of Detection Efficiency and Spatial Resolution of Coated nMCP[J]. Nuclear Physics Review, 2021, 38(2): 190-195. DOI: 10.11804/NuclPhysRev.38.2020058

Monte Carlo Simulation Study on Optimization of Detection Efficiency and Spatial Resolution of Coated nMCP

Funds: National Key R&D Program of China(2017YFA0403702); National Natural Science Foundation of China(U1832119, 11775243); Fundamental Scientific Research Business Expenses of Central Universities(3072020CFQ1501, 3072020-CFQ1502); Youth Innovation Promotion Association CAS
More Information
  • Since neutron sensitive microchannel plates (nMCP) has high detection efficiency and the spatial resolution, combined with advanced readout electronics it can be a better choice for energy-resolved neutron imaging detectors. Compared with the matrix-doped nMCP, the nMCP based on Atomic Layer Deposition(ALD) has the advantages of less neutron sensitive material consumption and high secondary electron emission coefficient on the inner wall of the channel. Firstly, the typical neutron and gamma signal of natGd-doped nMCP were studied experimentally. Geant4 simulation and theoretical calculation were performed to optimize the pore diameter, wall thickness, bias angle and coating thickness of the coated 10B2O3 nMCP. It was shown that the thermal neutron detection efficiency was about 56% and the spatial resolution was about 22 μm when the coating thickness was 1 μm, the pore diameter was 10 μm, the wall thickness was 1 μm and the bias angle was 3°. The results are of great significance to the geometric parameter design of nMCP used as energy-resolved neutron imaging detectors at CSNS.
  • [1]
    ZHOU Jianrong, SUN Zhijia, LIU Ben, et al. Chinese Physics C, 2011, 35(07): 668. DOI: 10.1088/1674-1137/35/7/012
    [2]
    SATO H, MOCHIKI K I, TANAKA K, et al. Nucl Instr and Meth A, 2019, 943: 162501. DOI: 10.1016/j.nima.2019.162501
    [3]
    TREMSIN A S, VALLERGA J V. Radiation Measurements, 2019, 130: 106228. DOI: 10.1016/j.radmeas.2019.106228
    [4]
    KOCKELMANN W, FREI G, LEHMANN E H, et al. Nucl Instr and Meth A, 2007, 578(2): 421. DOI: 10.1016/j.nima.2007.05.207
    [5]
    FRASER G W, PEARSON J F. T Nucl Instr and Meth A, 1990, 293(3): 569. DOI: 10.1016/0168-9002(90)90325-Z
    [6]
    TREMSIN A S, VALLERGA J V, MCPHATE J B, et al. Nucl Instr and Meth A, 2008, 592(3): 374. DOI: 10.1016/j.nima.2008.03.116
    [7]
    SIEGMUND O H, VALLERGA J V, TREMSIN A S, et al. Nucl Instr and Meth A, 2007, 576(1): 178. DOI: 10.1016/j.nima.2007.01.148
    [8]
    TREMSIN A S, MCPHATE J B, VALLERGA J V, et al. Nucl Instr and Meth A, 2011, 628(1): 415. DOI: 10.1016/j.nima.2010.07.014
    [9]
    WANG Yiming, TIAN Yang, YANG Yigang, et al. Chinese Physics C, 2016, 40(09): 106. DOI: 10.1088/1674-1137/40/9/096004
    [10]
    WANG Yiming, YANG Yigang, WANG Xuewu, et al. Nucl Instr and Meth A, 2015, 784: 226. DOI: 10.1016/j.nima.2014.12.058
    [11]
    MANE A U, PENG Q, ELAM J W, et al. Physics Procedia, 2012, 37(13): 722. DOI: 10.1016/j.phpro.2012.03.720
    [12]
    LU Nianhua, YANG Yigang, LV Jingwen, et al. Physics Procedia, 2012, 26: 61. DOI: 10.1016/j.phpro.2012.03.010
    [13]
    王胜, 李航, 曹超, 等. 物理学报, 2015, 64(10): 83. DOI: 10.7498/aps.64.102801

    WANG Sheng, LI Hang, CAO Chao, et al. Acta Physica Sinica, 2015, 64(10): 83. (in Chinese) DOI: 10.7498/aps.64.102801
    [14]
    TREMSIN A S, MCPHATE J B, VALLERGA J V, et al. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6945: 69451. DOI: 10.1117/12.777863
    [15]
    TREMSIN A S, FELLER W B, DOWNING R G. Nucl Instr and Meth A, 2005, 539(1): 278. DOI: 10.1016/j.nima.2004.09.028
    [16]
    AGOSTINELLI S, ALLISON J, AMAKO K, et al. Nucl Instr and Meth A, 2003, 506(3): 250. DOI: 10.1016/S0168-9002(03)01368-8
  • Related Articles

    [1]HUANG Chang, TANG Bin, LIU Yun, CHEN Shaojia, WANG Xiuku, SUN Zhijia, CHEN Yuanbo, YAO Zeen. Performance Test of the Array Scintillator Detector with a Large Area for GPPD[J]. Nuclear Physics Review, 2019, 36(2): 190-196. DOI: 10.11804/NuclPhysRev.36.02.190
    [2]XU Yao, PEI Xi, LIU Hongdong, HUO Wanli, ZHOU Jieping, XU Xie. Robust Optimizer for Intensity Modulated Proton Therapy based on GPU[J]. Nuclear Physics Review, 2019, 36(1): 96-103. DOI: 10.11804/NuclPhysRev.36.01.096
    [3]Application of Multi-Objective Particle Swarm Optimization in the Design Optimization of Alternative Phase Focused DTL[J]. Nuclear Physics Review, 2015, 32(4): 415-420. DOI: 10.11804/NuclPhysRev.32.04.415
    [4]LI Jun, LUO Wen, XIAO Yongjun, SONG Yingming, ZHU Zhichao, GUO Qian, Zhuocheng. Parameter Optimization and Calculation of Spallation Target in Accelerator Driven sub-critical System[J]. Nuclear Physics Review, 2014, 31(4): 550-554. DOI: 10.11804/NuclPhysRev.31.04.550
    [5]CHEN Ming, XU Tao, WANG Chuanke. 新式气体切伦科夫探测器光学系统设计及效率分析(已撤稿)[J]. Nuclear Physics Review, 2013, 30(4): 441-445. DOI: 10.11804/NuclPhysRev.30.04.441
    [6]JIANG Zi-yun, ZHANG Wei, GU Ke-wei, WU Jun-qi, CHEN Yun, YANG Feng, AN Shi, LIU Xiao-jun. Optimized Program of MSC1210 Power Supply Controller[J]. Nuclear Physics Review, 2013, 30(1): 38-41. DOI: 10.11804/NuclPhysRev.30.01.038
    [7]LI Ren-shun, ZHOU Yu-lu, WANG Jun. Monte Carlo Simulations and Parameter Optimization of Migrationcoalescence of Helium Bubbles in Materials[J]. Nuclear Physics Review, 2012, 29(1): 85-91. DOI: 10.11804/NuclPhysRev.29.01.085
    [8]WEI Zheng, LI Hao-xiang, ZHANG Yi, WANG Shan-shan, HU Bi-tao, #. Monte Carlo Simulation of Spatial Resolution of Micromegas as a Neutron Detector[J]. Nuclear Physics Review, 2010, 27(3): 291-295. DOI: 10.11804/NuclPhysRev.27.03.291
    [9]LI Min, GOU Cheng-jun, WU Zhang-wen, HOU Qing#. Request of Dose Calculation Method in Arc modulated Radiation Therapy[J]. Nuclear Physics Review, 2010, 27(2): 218-222. DOI: 10.11804/NuclPhysRev.27.02.218
    [10]ZHAO Zhen-min. On Quantum Chemical ab Initio Method and Precision Evaluation of the Calculation Results by Gaussian98 Program[J]. Nuclear Physics Review, 2006, 23(3): 331-334. DOI: 10.11804/NuclPhysRev.23.03.331
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1011) PDF downloads (77) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return