Processing math: 100%
Advanced Search
Zhigang XIAO. Transport of Isospin Degree of Freedom in Heavy Ion Reactions and the Constraint of Symmetry Energy[J]. Nuclear Physics Review, 2020, 37(3): 249-259. DOI: 10.11804/NuclPhysRev.37.2019CNPC63
Citation: Zhigang XIAO. Transport of Isospin Degree of Freedom in Heavy Ion Reactions and the Constraint of Symmetry Energy[J]. Nuclear Physics Review, 2020, 37(3): 249-259. DOI: 10.11804/NuclPhysRev.37.2019CNPC63

Transport of Isospin Degree of Freedom in Heavy Ion Reactions and the Constraint of Symmetry Energy

Funds: National Natural Science Foundation of China (11875174, 11375094); National Basic Research Program of China (973) (2015CB856903)
More Information
  • Received Date: February 21, 2020
  • Revised Date: June 01, 2020
  • Heavy ion reactions provide an effective tool to study the nuclear equation of state (EOS) in terristial laborartory. When the number of neutrons differs largely with the number of protons in a nuclear system or nuclei, the main contribution to the nuclear EOS comes from the symmetry energy term. The nuclear symmetry energy, reflecting the isovector sector of the nucleon-nucleon potential, is closely relevant to the structural properties of dense object and the merging process in stellar environments, as well as to the exotic properties of nuclei and the location of the board of nuclear chart. However, the density dependence of the nuclear symmetry energy is the most unknown ingredient in the properties of nuclear matter so far. Thus the investigation of nuclear symmetry energy in wide density range becomes the main frontiers in many world-level nuclear laboratories and astrophyics observatories. In this article, we review briefly the experimental progress in this field. Particularly the experimental studies on the transport of the isospin degree of freedom in heavy ion reactions and the constraint of nuclear symmetry energy based on the Heavy Ion Research Facity at Lanzhou (HIRFL) are introduced. It has been shown that the isospin drift process persists to the late stage of the reaction, indicating that the isospin transport time scale may depend on the physics process under investigation. Due to the long-time accumulation of isospin effects, the angular distribution of the isospin concentration of the light particles in a wide range of angle is a sensitive probe of nuclear symmetry energy. With S=28.3MeV fixed at saturation point, the slope of the symmetry energy depending on density is contrained in the range of L=3361MeV at CL=95%. Using a Compact Spectrometer for Havy Ion Experiment (CSHINE) with ability to achieve isotopic particle identification and fission event reconstruction, the small angle correlation function of the isotope-resolved light charged particles can be measured to derive the time scale of isospin relaxation in heavy ion reactions at Fermi energies. In the last section of the article, the isovector orientation effect of the polarized deuteron beam scattering off heavy target is introduced, which offers a novel means to constrain the nuclear symmetry energy below saturation density.
  • [1]
    STURM C, BÖTTCHER I, DȨBOWSKI M, et al. Phys Rev Lett, 2001, 86: 39. DOI: 10.1103/PhysRevLett.86.39
    [2]
    HARTNACK C, OESCHLER H, AICHELIN J. Phys Rev Lett, 2006, 96: 012302. DOI: 10.1103/PhysRevLett.96.012302
    [3]
    LI B A, CHEN L W, KO C M, LI B A. Phys Rep, 2008, 464: 113. DOI: 10.1016/j.physrep.2008.04.005
    [4]
    XIAO Z G, YONG G C, CHEN L W, et al. Eur Phys J A, 2014, 50: 37. DOI: 10.1140/epja/i2014-14037-6
    [5]
    CHEN L W, KO C M, LI B A, et al. Eur Phys J A, 2014, 50: 29. DOI: 10.1140/epja/i2014-14029-6
    [6]
    CHEN L W, KO C M, LI B A . Phys Rev C, 2007, 76: 054316. DOI: 10.1103/PhysRevC.76.054316
    [7]
    LATTIMER J M, STEINER A W. Eur Phys J A, 2014, 50: 40. DOI: 10.1140/epja/i2014-14040-y
    [8]
    OYAMATSU K, ⅡDA K. Phys Rev C, 2007, 75: 015801.
    [9]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Phys Rev Lett, 2017, 119: 161101. DOI: 10.1103/PhysRevLett.119.161101
    [10]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Phys Rev Lett, 2018, 121: 161101. DOI: 10.1103/PhysRevLett.121.161101
    [11]
    DE SOUMI, FINSTAD D, LATTIMER J, et al. Phys Rev Lett, 2018, 121: 091102. DOI: 10.1103/PhysRevLett.121.091102
    [12]
    ZHU Z Y, ZHOU E P, LI A. Astro Phys J, 2018, 862: 98. DOI: 10.3847/1538-4357/aacc28
    [13]
    XIE W J, LI B A. Astro Phys J, 2019, 883: 174. DOI: 10.3847/1538-4357/ab3f37
    [14]
    WU H Y, XIAO Z G, JIN G M, et al. Phys Lett B, 2002, 538: 39. DOI: 10.1016/S0370-2693(02)01971-8
    [15]
    TSANG M B, LIU T X, SHI L, et al. Phys Rev Lett, 2004, 92: 062701. DOI: 10.1103/PhysRevLett.92.062701
    [16]
    LI B A, DAS C B, GUPTA S D, et al. Nuclear Physics A, 2004, 735: 563. DOI: 10.1016/j.nuclphysa.2004.02.016
    [17]
    CHEN L W, KO C M, LI B A, et al. Phys Rev Lett, 2005, 94: 032701. DOI: 10.1103/PhysRevLett.94.032701
    [18]
    TSANG M B, FRIEDMAN W A, GELBKE C K, et al. Phys Rev Lett, 2001, 86: 5023. DOI: 10.1103/PhysRevLett.86.5023
    [19]
    CHEN L W, KO C M, LI B A, et al. Phys Rev C, 2010, 82: 024321. DOI: 10.1103/PhysRevC.82.024321
    [20]
    ZHANG Z, CHEN L W. Phys Rev C, 2014, 90: 064317. DOI: 10.1103/PhysRevC.90.064317
    [21]
    LI T, GARG U, LIU Y, et al. Phys Rev C, 2010, 81: 034309. DOI: 10.1103/PhysRevC.81.034309
    [22]
    TSANG M B, ZHANG Y X, DANIELEWICZET P, et al. Phys Rev Lett, 2009, 102: 122701. DOI: 10.1103/PhysRevLett.102.122701
    [23]
    LIU M, WANG N, LI Z, et al. Phys Rev C, 2010, 82: 064306. DOI: 10.1103/PhysRevC.82.064306
    [24]
    LI B A, HAN X. Phys Lett B, 2013, 727: 276. DOI: 10.1016/j.physletb.2013.10.006
    [25]
    TSANG M B, STONE J R, CAMERA F, et al. Phys Rev C, 2012, 86: 015803. DOI: 10.1103/PhysRevC.86.015803
    [26]
    WATTS A L. AIP Conferences Series, 2019, 2127: 020008.
    [27]
    ZIMMERMAN J, CARSON Z, SCHUMACHER K, et al. arXiv: astro-ph.HE/2002.03210.
    [28]
    BAIOTTI L. arXiv: astro-ph.HE/1907.08534.
    [29]
    JEDELE A, MCINTOSH A B, HAGEL K, et al. Phys Rev Lett, 2017, 118: 062501. DOI: 10.1103/PhysRevLett.118.062501
    [30]
    XU H S, TSANG M B, LIU T X, et al. Phys Rev Lett, 2000, 85: 716. DOI: 10.1103/PhysRevLett.85.716
    [31]
    GATTY B, GUERREAU D, LEFORT M, et al. Nucl Phys A, 1975, 253: 511. DOI: 10.1016/0375-9474(75)90495-9
    [32]
    CHIANG T H, GUERREAU D, AUGER P, et al. Phys Rev C, 1979, 20: 1408. DOI: 10.1103/PhysRevC.20.1408
    [33]
    LOZHKIN O V, TRAUTMANN W. Phys Rev C, 1992, 46: 1996. DOI: 10.1103/PhysRevC.46.1996
    [34]
    ADEMARD G, BORDERIE B, CHBIHI A, et al(INDRA Collaboration). Eur Phys J A, 2014, 50: 33. DOI: 10.1140/epja/i2014-14033-x
    [35]
    LI B A, KO C M. Phys Rev C, 1998, 57: 2065. DOI: 10.1103/PhysRevC.57.2065
    [36]
    YENNELLO S J, YOUNGAB B, YEE J, et al. Phys Lett B, 1994, 321: 15. DOI: 10.1016/0370-2693(94)90321-2
    [37]
    CHEN L W, GE L X, ZHANG X, et al. J Phys G, 1997, 23: 211. DOI: 10.1088/0954-3899/23/2/008
    [38]
    SUN Z Y, TSANG M B, LYNCH W G, et al. Phys Rev C, 2010, 82: 051603(R). DOI: 10.1103/PhysRevC.82.051603
    [39]
    SOULIOTIS G A, VESELSKYAB M, SHETTY D V, et al. Phys Lett B, 2004, 588: 35. DOI: 10.1016/j.physletb.2004.03.027
    [40]
    SOULIOTIS G A, FOUNTAS P N, VESELSKY M, et al. Phys Rev C, 2014, 90: 064612. DOI: 10.1103/PhysRevC.90.064612
    [41]
    HUDAN S, MCINTOSH A B, DE SOUZA R T, et al. Phys Rev C, 2012, 86: 021603(R).
    [42]
    BROWN K, HUDAN S, DE SOUZA R T, et al. Phys Rev C, 2013, 87: 061601.
    [43]
    WANG R S, ZHANG Y, XIAO Z G, et al. Phys Rev C, 2014, 89: 064613. DOI: 10.1103/PhysRevC.89.064613
    [44]
    WU Q, ZHANG Y, XIAO Z G, et al. Phys Rev C, 2015, 91: 014617. DOI: 10.1103/PhysRevC.91.014617
    [45]
    ZHANG Y, TIAN J L, CHENG W J, et al. Phys Rev C, 2017, 95: 041602(R). DOI: 10.1103/PhysRevC.95.041602
    [46]
    MILKAU U, BERDERMANN E, BERTHIER B, et al. Phys Rev C, 1991, 44: R1242(R). DOI: 10.1103/PhysRevC.44.R1242
    [47]
    ZHANG Y X, LIU M , XIA C J, et al. Phys Rev C, 2020, 101: 034303. DOI: 10.1103/PhysRevC.101.034303
    [48]
    HANBURY B R, TWISS R Q. Nature, 1956, 178: 1046. DOI: 10.1038/1781046a0
    [49]
    KIM Y D, DE SOUZA R T, BOWMAN D R, et al. Phys Rev Lett, 1991, 67: 14. DOI: 10.1103/PhysRevLett.67.14
    [50]
    BOWMAN D R, PEASLEE G F, CARLIN N, et al. Phys Rev Lett, 1993, 70: 3534. DOI: 10.1103/PhysRevLett.70.3534
    [51]
    HE Z Y, JIN G M, LI Z Y, et al. Phys Rev C, 1998, 57: 1824. DOI: 10.1103/PhysRevC.57.1824
    [52]
    KOONIN S. Phys Lett B, 1977, 70: 43. DOI: 10.1016/0370-2693(77)90340-9
    [53]
    XIAO Z G, HU R J, WU H Y, et al. Phys Lett B, 2006, 639: 436. DOI: 10.1016/j.physletb.2006.06.076
    [54]
    WEI X L, GUAN F H, YANG H R, et al. Nucl Engin Tech, 2020, 52: 575. DOI: 10.1016/j.net.2019.08.020
    [55]
    ZHANG Y, TSANG M B, LI Z. Phys Lett B, 2015, 749: 262. DOI: 10.1016/j.physletb.2015.07.064
    [56]
    XU J, CHEN L W, TSANG M B, et al. Phys Rev C, 2016, 93: 044609. DOI: 10.1103/PhysRevC.93.044609
    [57]
    ZHANG Y X, WANG Y J, COLONNA M , et al. Phys Rev C, 2018, 97: 034625. DOI: 10.1103/PhysRevC.97.034625
    [58]
    ONO A, XUN J, COLONNA M, et al. Phys Rev C, 2019, 100: 044617. DOI: 10.1103/PhysRevC.100.044617
    [59]
    ZHANG Y X, WANG N, LI Q F, et al. Front Phys, 2020, 15: 54301. DOI: 10.1007/s11467-020-0961-9
    [60]
    OU L, LI Z, WU X. Phys Rev C, 2008, 78: 044609. DOI: 10.1103/PhysRevC.78.044609
    [61]
    XU C, LI B A, CHEN L W. Phys Rev C, 2010, 82: 054607. DOI: 10.1103/PhysRevC.82.054607
    [62]
    BARYSHEVSKY V, ROUBA A. Phys Lett B, 2010, 683: 229. DOI: 10.1016/j.physletb.2009.12.003
    [63]
    OPPENHEIMER J R, PHILLIPS M. Phys. Rev, 1935, 48: 500. DOI: 10.1103/PhysRev.48.500
    [64]
    LAWRENCE E O, MCMILLAN E, THORNTON R L. Phys. Rev, 1935, 48: 493. DOI: 10.1103/PhysRev.48.493
    [65]
    LIANG J F, BEENEA J R, CARALEY A L, et al. Phys Lett B, 2009, 681: 22. DOI: 10.1016/j.physletb.2009.09.055
    [66]
    OU L, XIAO Z G, YI H, et al. Phys Rev Lett, 2015, 115: 212501. DOI: 10.1103/PhysRevLett.115.212501
    [67]
    MOROZOV V S, CHAO AW, KRISCH A D, et al. Phys Rev Lett, 2009, 103: 144801. DOI: 10.1103/PhysRevLett.103.144801
    [68]
    HATANAKA K, TAKAHISA K, TAMURA H, et al. Nucl Instr and Meth A, 1997, 384: 575. DOI: 10.1016/S0168-9002(96)00941-2
    [69]
    KÖHLER S. Nucl Phys A, 1976, 258: 301. DOI: 10.1016/0375-9474(76)90008-7
    [70]
    TONDERUR F, BRACK M, FARINE M, et al. Nucl Phys A, 1984, 420: 297. DOI: 10.1016/0375-9474(84)90444-5
    [71]
    BARTEL J, QUENTIN P, BRACK M, et al. Nucl Phys A, 1982, 386: 79. DOI: 10.1016/0375-9474(82)90403-1
    [72]
    MARGUERON J, NAVARRO J, VAN GAI N. Phys Rev C, 2002, 66: 014303.
    [73]
    LIANG X, OU L, XIAO Z G. Phys Rev C, 2020, 101: 024603. DOI: 10.1103/PhysRevC.101.024603
    [74]
    DU W, YIN P, LI Y, et al. Phys Rev C, 2018, 97: 064620. DOI: 10.1103/PhysRevC.97.064620
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 魏国俊,王永佳,李庆峰,刘福虎. 基于机器学习从逐事件重离子碰撞提取物理信息. 原子能科学技术. 2023(04): 774-783 .
    2. 高泽鹏,王永佳,李庆峰,刘玲. 利用机器学习研究原子核四极形变在中能重离子碰撞中的效应. 中国科学:物理学 力学 天文学. 2022(05): 96-106 .
    3. 杨佳烨,刘玲,李鹏程,王永佳,李庆峰. 弹靶核的形变效应对中能区U+U碰撞的影响. 中国科学:物理学 力学 天文学. 2021(11): 87-95 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1272) PDF downloads (237) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return