Processing math: 100%
Advanced Search
Qiyue ZHANG, Zhao ZHANG. Roberge-Weiss Transition in the Polyakov-loop Extended Quark-meson Model[J]. Nuclear Physics Review, 2020, 37(3): 713-719. DOI: 10.11804/NuclPhysRev.37.2019CNPC35
Citation: Qiyue ZHANG, Zhao ZHANG. Roberge-Weiss Transition in the Polyakov-loop Extended Quark-meson Model[J]. Nuclear Physics Review, 2020, 37(3): 713-719. DOI: 10.11804/NuclPhysRev.37.2019CNPC35

Roberge-Weiss Transition in the Polyakov-loop Extended Quark-meson Model

Funds: National Natural Science Foundation of China(11875127, 11275069)
More Information
  • Corresponding author:

    Zhao ZHANG, E-mail: zhaozhang@pku.org.cn.

  • Received Date: December 30, 2019
  • Revised Date: May 12, 2020
  • Z3-QCD is a QCD-like theory with strict center symmetry. We use the Polyakov-loop extended quark meson model (PQM) as a low-energy effective theory of Z3-QCD to study the RW transitions in different center symmetry breaking patterns. The flavor-dependent imaginary chemical potentials, namely (μu,μd,μs)=iT(θ2Cπ/3,θ,θ+2Cπ/3) are adopted, which guarantees the RW periodicity. The traditional and quark improved Polyakov-loop potentials are used, respectively. For Nf=3 with C1, the RW transition occurs at θ=π/3 (mod 2π/3), which gets stronger when C declines from one to zero. When C=1, the RW transition happens at θ=2π/3 (mod 2π/3) for Nf=2+1, but θ=π/3 (mod 2π/3) for Nf=1+2. We find that all RW transition endpoints are triple points when C=1. We confirm that the RW transition becomes weaker and the deconfinement temperature gets lower when taking into account the quark back-reaction effect. However, the modification of the gluon sector due to the quark effect does not change the main conclusions mentioned above.
  • [1]
    KOGUT J B, SINCLAIR D K. Phys Rev D, 2008, 77: 114503. DOI: 10.1103/PhysRevD.77.114503
    [2]
    DE FORCRAND P, PHILIPSEN O. Nucl Phys B, 2002, 642: 290. DOI: 10.1016/S0550-3213(02)00626-0
    [3]
    DE FORCRAND P, PHILIPSEN O. Nucl Phys B, 2003, 673: 170. DOI: 10.1016/j.nuclphysb.2003.09.005
    [4]
    ELIA M D, LOMBARDO M P. Phys Rev D, 2003, 67: 014505. DOI: 10.1103/PhysRevD.67.014505
    [5]
    ELIA M D, LOMBARDO M P. Phys Rev D, 2004, 70: 074509. DOI: 10.1103/PhysRevD.70.074509
    [6]
    CHEN H S , LUO X Q. Phys Rev D, 2005, 72: 034504. DOI: 10.1103/PhysRevD.72.034504
    [7]
    WU L K , LUO X Q, CHEN H S. Phys Rev D, 2007, 76: 034505. DOI: 10.1103/PhysRevD.76.034505
    [8]
    ELIA M D, RENZO F D, LOMBARDO M P. Phys Rev D, 2007, 76: 114509. DOI: 10.1103/PhysRevD.76.114509
    [9]
    ROBERGE A, WEISS N. Nucl Phys B, 1986, 275: 734. DOI: 10.1016/0550-3213(86)90582-1
    [10]
    WU L K, MENG X F. Phys Rev D, 2013, 87: 094508. DOI: 10.1103/PhysRevD.87.094508
    [11]
    PHILIPSEN O, PINKE C. Phys Rev D, 2014, 89: 094504. DOI: 10.1103/PhysRevD.89.094504
    [12]
    CZABAN C, CUTERI F, PHILIPSEN O, et al. Phys Rev D, 2016, 93: 054507. DOI: 10.1103/PhysRevD.93.054507
    [13]
    BONATI C, ELIA M D, MARITI M, et al. Phys Rev D, 2016, 93: 074504. DOI: 10.1103/PhysRevD.93.074504
    [14]
    BONATI C, CALORE E, D’ELIA M, et al. Phys Rev D, 2019, 99: 014502. DOI: 10.1103/PhysRevD.99.014502
    [15]
    KOUNO H, SAKAI Y. J Phys G: Nucl Part Phys, 2012, 39: 085010. DOI: 10.1088/0954-3899/39/8/085010
    [16]
    CHERMAN A, SEN S, UNSAL M, et al. Phys Rev Lett, 2017, 119: 222001. DOI: 10.1103/PhysRevLett.119.222001
    [17]
    LI X F, ZHANG Z. Phys Rev D, 2019, 100: 074026. DOI: 10.1103/PhysRevD.100.074026
    [18]
    SUGANO J, KOUNO H, YAHIRO M. Phys Rev D, 2017, 96: 014028. DOI: 10.1103/PhysRevD.96.014028
    [19]
    HAAS L M, STIELE R , BRAUN J, et al. Phys Rev D, 2013, 87: 076004. DOI: 10.1103/PhysRevD.87.076004
    [20]
    SCHAEFER B J, WAGNER M. Phys Rev D, 2009, 79: 014018. DOI: 10.1103/PhysRevD.79.014018
    [21]
    LENAGHAN J T, RISCHKE D H, SCHAFFNERBIELICH J. Phys Rev D, 2000, 62: 085008. DOI: 10.1103/PhysRevD.62.085008
    [22]
    KACZMAREK O, KARSCH F, PETRECZKY P, et al. Phys Lett B, 2002, 543: 41. DOI: 10.1016/S0370-2693(02)02415-2
    [23]
    STIELE R, BIELICH J S. Phys Rev D, 2016, 93: 094014. DOI: 10.1103/PhysRevD.93.094014
    [24]
    YIN S, WEN R, FU W J. Phys Rev D, 2019, 100: 094029. DOI: 10.1103/PhysRevD.100.094029
    [25]
    TORRES-RINCON J M, AICHELIN J. Phys Rev C, 2017, 96: 045205. DOI: 10.1103/PhysRevC.96.045205
    [26]
    FUSEAU D, STEINERT T, AICHELIN J. arXiv: 1908.08122.
  • Cited by

    Periodical cited type(1)

    1. 庞跃辉. 科技哲学新突破:澄清“夸克禁闭”认知误区. 南京理工大学学报(社会科学版). 2024(05): 1-8 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (845) PDF downloads (36) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return