Various theories have predicted the deep Dirac levels (DDLs) in atoms for many years. However, the existence of the DDL is still under debating, and need to be confirmed. With the development of high intensity lasers, nowadays, electrons can be accelerated to relativistic energies by high intensity lasers. Furthermore, electron-positron pairs can be created, and nuclear reactions can be ignited, which provide a new tool to explore the DDL related fields. In this paper, we propose a new experimental method to study the DDL levels by monitoring nuclei's orbital electron capture life time in plasma induced by high intensity lasers. The present study reveal that if a DDL exists, a nuclear electron capture rate could be enhanced by factor of over
10^7, which makes it a very sensitive method for the DDL detecting.