Advanced Search
DONG Ziqiang, LI Peng, YANG Jiancheng, LIU Jie, XIE Wenjun, RUAN Shuang, WANG Geng, WANG Kedong, YAO Liping, CAI Fucheng. Simulation Results of Loss Distribution of U36+ due to Charge-exchange Process[J]. Nuclear Physics Review, 2019, 36(1): 49-54. DOI: 10.11804/NuclPhysRev.36.01.049
Citation: DONG Ziqiang, LI Peng, YANG Jiancheng, LIU Jie, XIE Wenjun, RUAN Shuang, WANG Geng, WANG Kedong, YAO Liping, CAI Fucheng. Simulation Results of Loss Distribution of U36+ due to Charge-exchange Process[J]. Nuclear Physics Review, 2019, 36(1): 49-54. DOI: 10.11804/NuclPhysRev.36.01.049

Simulation Results of Loss Distribution of U36+ due to Charge-exchange Process

Funds: National Natural Science Foundation of China (11675235); Special Funding for Introduced Innovative R&D Team of Guangdong(2016ZT06G73)
More Information
  • Received Date: July 18, 2018
  • Revised Date: August 08, 2018
  • During heavy ion accelerator operation, the charge exchange effect between ions and residual gas molecules is the key factor to influence beam lifetime. The charge exchange process has ions lost on the wall and leads to a dynamical vacuum change, which will seriously affect the accelerator operation and reduce the extraction beam intensity. The Institute of Modern Physics' future project, called High Intensity heavy ion Accelerator Facility (HIAF), will be built in Huizhou city, Guangdong Province, China. The Booster Ring (BRing) will provide 2×11 ppp 238U35+ for nuclear physics experiments. This article studies the track of particle U36+ before impacting on the wall, which is the reference particle U35+ losing one electron, and gets the U36+ loss distribution along the BRing. The simulation result shows that U36+ will be influenced seriously by dispersion elements, and will be lost in the drift sections after the dipoles. Collimators made out of materials with low desorption will be installed in the particles lost positions. The collimator efficiency after optimization can be larger than 95%. It also shows BRing average pressure change and beam intensity change between collimators on and off. The result points out that the BRing average pressure change will be less than 10% with collimators on, which makes BRing operate stably.
  • [1]
    YANG Jiancheng, XIA Jiawen, XIAO Guoqing, et al. Nucl Instr and Meth B, 2013, 317:263.
    [2]
    GROBNER Ö, CALDER R S. IEEE Transactions on Nuclear Science, 1973, 20(3):760.
    [3]
    J BOSSER, M CHANEL, C HILL, et al. Part Accel, 1999, 63(CERN-PS-99-033-DI):171.
    [4]
    ZHANG S Y, AHRENS L A. Gold beam losses at the AGS Booster injection[C]//Particle Accelerator Conference, IEEE, 1999, 5:3294.
    [5]
    KRAMER Ä, BOINE-FRANKENHEIM O, MUSTAFIN E, et al. Measurement and Calculation of U28+ Beam Lifetime in SIS[C]//Proc of EPAC. 2002, 2547.
    [6]
    LI Peng, YUAN Youjin, YANG Jiancheng, et al. Physical Review Special Topics-Accelerators and Beams, 2014, 17(8):084201.
    [7]
    MAHNER E. CERN Report No LHC/VAC-TN-2002-04, 2002.
    [8]
    MAHNER E, HANSEN J, LAURENT J M, et al. Physical Review Special Topics-Accelerators and Beams, 2003, 6(1):013201.
    [9]
    OMET C, P SPILLER, STADLMANN J. Simulation of Dynamic Vacuum Induced Beam Loss[C]//These Proceedings. 2006.
    [10]
    SCHLACHTER A S, STEARNS J W, GRAHAM W G, et al. Physical Review A, 1983, 27(6):3372.
    [11]
    FRANZKE B. IEEE Transactions on Nuclear Science, 1981, 28(3):2116.
    [12]
    BOSSER J, CHANEL M, HILL C, et al. Part Accel, 1999, 63(CERN-PS-99-033-DI):171.
    [13]
    MADSEN N. PS/DI Note, 1999:99.
    [14]
    OMET C, SPILLER P, STADLMANN J, et al. New Journal of Physics, 2006, 8(11):284.
    [15]
    LEE S Y. Accelerator Physics[M]. Singapore:World Scientific Publishing Company, 2011:129.
    [16]
    DONG Ziqiang, LI Peng, YANG Jiancheng, et al. Nucl Instr and Meth A, 2017, 870:73.
  • Related Articles

    [1]Xiang ZHANG, Li’an JIN, Jing YANG, Jingjing ZHANG, Xiaoke HAN, Wentian FENG, Lixia ZHAO, Mingbang LÜ, Enming MEI, Wenjie YANG, Qinggao YAO, Lizhen MA. Magnetic Field Measurement System of the BRing Fast Ramping Dipole Magnet in HIAF[J]. Nuclear Physics Review, 2022, 39(4): 470-475. DOI: 10.11804/NuclPhysRev.39.2022027
    [2]Fucheng CAI, Jiancheng YANG, Jiawen XIA, Dayu YIN, Jie LIU, Guodong SHEN, Geng WANG, Shuang RUAN, Liping YAO, Xiaoqiang CHEN. Simulation Study of the Beam Loading Effects During the Bunch Merging in HIAF-BRing[J]. Nuclear Physics Review, 2020, 37(2): 180-185. DOI: 10.11804/NuclPhysRev.37.2019058
    [3]YAO Liping, CHAI Weiping, YANG Jiancheng, XIA Jiawen, SHEN Guodong, REN Hang, LIU Jie, RUAN Shuang, WANG Geng, DONG Ziqiang, CAI Fucheng. Development and Validation of TPIS Program for Two-plane Multiturn Injection and Optimization[J]. Nuclear Physics Review, 2019, 36(3): 322-328. DOI: 10.11804/NuclPhysRev.36.03.322
    [4]LI Wuyuan, XU Junkui, YANG Yao, SU Youwu, YAN Weiwei, YANG Bo, MAO Wang, XU Chong, WANG Lijun. Shielding Design for BRing and High-energy Experimental Terminal in HIAF[J]. Nuclear Physics Review, 2018, 35(3): 302-307. DOI: 10.11804/NuclPhysRev.35.03.302
    [5]QU Guofeng, XIA Jiawen, YANG Jiancheng, LI Zhongshan, DU Heng, GE Wenwen, ZHENG Wenheng, LI Xiaoni, HU Xuejing, CHAI Weiping. Simulation of Two Planes Painting Injection for HIAF-Bring[J]. Nuclear Physics Review, 2018, 35(1): 28-33. DOI: 10.11804/NuclPhysRev.35.01.028
    [6]YIN Bin, LI Demin, YANG Jiancheng, SHENG Li'na, ZHANG Xiaohu. Study on Acceleration of Polarized Beam at HIAF-Bring[J]. Nuclear Physics Review, 2017, 34(4): 735-739. DOI: 10.11804/NuclPhysRev.34.04.735
    [7]GOU Boxing, ENGELS Ralf. Proposal for a Spin Physics Research at HIAF-Bring[J]. Nuclear Physics Review, 2017, 34(3): 551-556. DOI: 10.11804/NuclPhysRev.34.03.551
    [8]B. Rubio, S. E. A. Orrigo, A. Algora, B. Blank, Y. Fujita, H. Fujita, et al.. Comparison of β-decay and Charge-exchange Reactions in Mirror T =2 Nuclei and Isospin Mixing[J]. Nuclear Physics Review, 2016, 33(2): 225-229. DOI: 10.11804/NuclPhysRev.33.02.225
    [9]SI Ruifang, LIU Fuhu. Azimuthal Distribution of Charged Particles in Pb-Pb Collisions at 2.76 TeV[J]. Nuclear Physics Review, 2015, 32(4): 392-397. DOI: 10.11804/NuclPhysRev.32.04.392
    [10]LIU Fu-hu. On Collision Geometry, Energy Loss and Transverse Energy Distribution in High Energy p A Collisions[J]. Nuclear Physics Review, 1997, 14(1): 37-39. DOI: 10.11804/NuclPhysRev.14.01.037
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1320) PDF downloads (70) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return