Advanced Search

WU Bo, YANG Jiancheng, GE Wenwen, XIA Jiawen, SHEN Guodong, YAN Xinliang. Ion Optics Design of the Isochronous Modes for the HIAF/Sring[J]. Nuclear Physics Review, 2018, 35(3): 270-277. doi: 10.11804/NuclPhysRev.35.03.270
Citation: WU Bo, YANG Jiancheng, GE Wenwen, XIA Jiawen, SHEN Guodong, YAN Xinliang. Ion Optics Design of the Isochronous Modes for the HIAF/Sring[J]. Nuclear Physics Review, 2018, 35(3): 270-277. doi: 10.11804/NuclPhysRev.35.03.270

Ion Optics Design of the Isochronous Modes for the HIAF/Sring

doi: 10.11804/NuclPhysRev.35.03.270
Funds:  Youth Funds of National Natural Science Foundation of China (11705253, 11605248)
  • Received Date: 2018-03-20
  • Rev Recd Date: 2018-04-25
  • Publish Date: 2018-09-20
  • The Spectrometer Ring, as the most important experiment terminal of the High Intensity heavy-ion Accelerator Facility (HIAF) project, is a key device to obtain high-quality radioactive ion beams (RIBs) for atomic physics, nuclear physics experiments and accelerator technology researches. Three operation modes including the isochronous mode, the normal mode and the internal target mode, have been designed for the SRing. In the isochronous mode, the SRing operates under a special ion optics and could be used for precision mass measurement of short-lived nuclei with half-life shorter than several tens of microseconds. This study aims to design the ion optics for the isochronous mode and improve the mass resolving power of the SRing with higher-order ion-optical correction scheme for isochronism while preserve a large momentum acceptance of SRing. The ion optics and the higher-order correction for the isochronous mode are calculated with the code MAD-X and GICOSY respectively. Three ion optics with γt=1.43, 1.67, 1.83 settings have been calculated. The code MCOADI which utilizes the matrixes generated by the code GICOSY is used for particles tracking to verify the correction results. For the ion-optical setting of γt=1.43 with a momentum acceptance of ±0.20%, the mass resolving power of the SRing could be improved from R=1.6×104 to R=1.2×106, after isochronous higher-order corrections.
  • [1] YANG J C, XIA J W, XIAO G Q, et al. Nucl Instr Meth B, 2013, 317:263.
    [2] MA X, WEN W Q, ZHANG S F, et al. Nucl Instr Meth B, 2017, 408:169.
    [3] RADON T, KERSCHER T, SCHLITT B, et al. Phys Rev Lett, 1997, 78(25):4701.
    [4] LITVINOV Y A, GEISSEL H, RADON T, et al. Nucl Phys A, 2005, 756(1-2):3.
    [5] FRANZKE B, BECKERT K, EICKHOFF H, et al. Phys Scri, 1995, T59(1995):176.
    [6] HAUSMANN M, ATTALLAH F, BECKERT K, et al. Nucl Instr Meth A, 2000, 446(3):569.
    [7] XU X, ZHANG P, SHUAI P, et al. Phys Rev Lett, 2016, 117(18):182503.
    [8] WU B, YANG J C, XIA J W, et al. Nucl Instr Meth A, 2018, 881:27.
    [9] XIA J W, ZHAN W L, WEI B W, et al. Nucl Instr Meth A, 2002, 488(1):11.
    [10] LITVINOV S, TOPREK D, WEICK H, et al. Nucl Instr Meth A, 2013, 724:20.
    [11] DOLINSKⅡ A, LITVINOV S, STECK M, et al. Nucl Instr Meth A, 2007, 574, 207.
    [12] DOLINSKⅡ A, GEISSEL H, LITVINOV S, et al. Nucl Instr Meth B, 2008, 266, 4579.
    [13] GROTE H, SCHMIDT F. Pac 2003. Proceedings of the. IEEE, 2003:3497.
    [14] GEISSEL H, LITVINOV YU A. J Phys G, 2005, 31, S1779.
    [15] SUN B, KNOBEL R, LITVINOV YU A, et al. Nucl Phys A, 2008, 812(1):1.
    [16] BERZ M, HOFFMANN H C, WOLLNIK H. Nucl Instr Meth A, 1987, 258(3):402.
    [17] WOLLNIK H, HARTMANN B, BERZ M. AIP, 1988, 77:74.
    [18] IWASA N, GEISSEL H, MÜNZENBERG G, et al. Nucl Instr Meth, 1997, 126(1-4):284.
    [19] IWASA N, WEICK H, GEISSEL H. Nucl Instr Meth B, 2011, 269(8):752.
    [20] ZENG Q, WANG M, ZHOU X H, et al. Phys Rev C, 2017, 96(3):031303.
    [21] ABE Y, YAMAGUCHI Y, WAKASUGI M, et al. Phys Scripta, 2015, T166:014047.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1351) PDF downloads(104) Cited by()

Proportional views

Ion Optics Design of the Isochronous Modes for the HIAF/Sring

doi: 10.11804/NuclPhysRev.35.03.270
Funds:  Youth Funds of National Natural Science Foundation of China (11705253, 11605248)

Abstract: The Spectrometer Ring, as the most important experiment terminal of the High Intensity heavy-ion Accelerator Facility (HIAF) project, is a key device to obtain high-quality radioactive ion beams (RIBs) for atomic physics, nuclear physics experiments and accelerator technology researches. Three operation modes including the isochronous mode, the normal mode and the internal target mode, have been designed for the SRing. In the isochronous mode, the SRing operates under a special ion optics and could be used for precision mass measurement of short-lived nuclei with half-life shorter than several tens of microseconds. This study aims to design the ion optics for the isochronous mode and improve the mass resolving power of the SRing with higher-order ion-optical correction scheme for isochronism while preserve a large momentum acceptance of SRing. The ion optics and the higher-order correction for the isochronous mode are calculated with the code MAD-X and GICOSY respectively. Three ion optics with γt=1.43, 1.67, 1.83 settings have been calculated. The code MCOADI which utilizes the matrixes generated by the code GICOSY is used for particles tracking to verify the correction results. For the ion-optical setting of γt=1.43 with a momentum acceptance of ±0.20%, the mass resolving power of the SRing could be improved from R=1.6×104 to R=1.2×106, after isochronous higher-order corrections.

WU Bo, YANG Jiancheng, GE Wenwen, XIA Jiawen, SHEN Guodong, YAN Xinliang. Ion Optics Design of the Isochronous Modes for the HIAF/Sring[J]. Nuclear Physics Review, 2018, 35(3): 270-277. doi: 10.11804/NuclPhysRev.35.03.270
Citation: WU Bo, YANG Jiancheng, GE Wenwen, XIA Jiawen, SHEN Guodong, YAN Xinliang. Ion Optics Design of the Isochronous Modes for the HIAF/Sring[J]. Nuclear Physics Review, 2018, 35(3): 270-277. doi: 10.11804/NuclPhysRev.35.03.270
Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return