Advanced Search
ZHOU Xiang, JIANG Tingting, XU Dan, YANG Zhen, LIANG Jianping, WANG Liang. Combining Logistic Regression and Markov Chain Monte-Carlo Describe the Relationship between Exposure to a Given Dose of Radiation and its Effect on Clostridium tyrobutyricum Strains[J]. Nuclear Physics Review, 2016, 33(4): 500-505. DOI: 10.11804/NuclPhysRev.33.04.500
Citation: ZHOU Xiang, JIANG Tingting, XU Dan, YANG Zhen, LIANG Jianping, WANG Liang. Combining Logistic Regression and Markov Chain Monte-Carlo Describe the Relationship between Exposure to a Given Dose of Radiation and its Effect on Clostridium tyrobutyricum Strains[J]. Nuclear Physics Review, 2016, 33(4): 500-505. DOI: 10.11804/NuclPhysRev.33.04.500

Combining Logistic Regression and Markov Chain Monte-Carlo Describe the Relationship between Exposure to a Given Dose of Radiation and its Effect on Clostridium tyrobutyricum Strains

Funds: CAS Light of West China Program(Ke-Fa-Ren-Zi[2015] No.77); Natural Science Foundation of Gansu Provincial(1506RJZA293)
More Information
  • Received Date: March 20, 2016
  • Revised Date: May 24, 2016
  • Using the Markov Chain Monte-Carlo method to estimate the parameters in the Logistic regression model, we constructed a non-periodic irreducible Markov Chain with the posterior distribution of the parameters as stationary distribution, and then used the sample points extracted from the stationary distribution to calculate the Monte-Carlo integral. The above theoretical method can solve the difficult problem of classical logistic regression modeling because of the existence and limitation of the experimental sample data and the multicollinearity. In the classical regression setup with a continuous response, the predicted values can range over all real numbers. Therefore, a different modelling technique is needed. In this work, the results describe in detail a previously unknown lethality trend following 12C6+ heavy-ion irradiation of Clostridium tyrobutyricum. By Markov Chain Monte-Carlo can calculate the model fit for a randomly selected subset of the chain and calculate the predictive envelope of the model. The grey areas in the plot correspond to 50%, 90%, 95%, and 99% posterior regions. More importantly, although this study focused on the use of the method in heavy-ion irradiation of microbial, its results are broadly applicable.
  • [1]
    KUTNER M H. Applied Linear Statistical Models[M]. Chicago:Irwin, 1996. 4:318.
    [2]
    KUTNER M H, NACHTSHEIM C, NETER J. Applied Linear Regression Models[M]. McGraw-Hill/Irwin, 2004.
    [3]
    PEDUZZI P, CONCATO J, KEMPER E, et al. Journal of Clinical Epidemiology, 1996, 49(12):1373.
    [4]
    HOSMER J D W, LEMESHOW S. Applied Logistic Regression[M]. John Wiley & Sons,2004.
    [5]
    HARRELL F. Regression Modeling Strategies:With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis[M]. Springer, 2015.
    [6]
    MENARD S. Applied Logistic Regression Analysis[M]. Sage, 2002. 106.
    [7]
    FRIEDMAN J, HASTIE T, TIBSHIRANI R. The Annals of Statistics, 2000, 28(2):337.
    [8]
    MOTULSKY H, CHRISTOPOULOS A. Fitting Models to Biological Data Using Linear and Nonlinear Regression:APractical Guide to Curve Fitting[M]. OUP USA, 2004.
    [9]
    POWELL J L. Journal of Econometrics, 1984, 25(3):303.
    [10]
    MIN C, ZELLNER A. Journal of Econometrics, 1993, 56(1):89.
    [11]
    SIMS C A, ZHA T. International Economic Review, 1998:949.
    [12]
    GILL J. Bayesian Methods:A Social and Behavioral Sciences Approach[M]. Florida:CRCPress, 2014. 20.
    [13]
    GEYER C J. Statistical Science, 1992:473.
    [14]
    GREEN P J. Biometrika, 1995, 82(4):711.
    [15]
    GILKS W R. Markov Chain Monte Carlo[M]. John Wiley & Sons, 2005.
    [16]
    HASTINGS W K.Biometrika, 1970, 57(1):97.
    [17]
    NEAL R M. Statistics and Computing, 2001, 11(2):125.
    [18]
    HAMMERSLEY J. Monte Carlo Methods[M]. Springer Science & Business Media, 2013.
    [19]
    NEAL R M. Journal of Computational and Graphical Statistics, 2000, 9(2):249.
    [20]
    METROPOLIS N, ROSENBIUTH A W, ROSENBIUTH M N, et al. The Journal of Chemical Physics, 1953, 21(6):1087.
    [21]
    GELFAND A E, HILLS S E, RACINE P A, et al. Journal of The American Statistical Association, 1990, 85(412):972.
    [22]
    QURESHI N, MEAGHER M M, HUANG J, et al. Journal of Membrane Science, 2001, 187(1):93.
    [23]
    TRAN H T M, CHEIRSILP B, HODGSONod B, et al. Biochemical Engineering Journal, 2010, 48(2):260.
    [24]
    ZHOU X, XIN Z J, LU X H, et al. Bioresource Technology, 2013, 137:386.
    [25]
    ZHOU X, LU X H, LI X H, et al. Biotechnology for Biofuels, 2014, 7(1):1.
    [26]
    KAZAMA Y, SAITO H, YAMAMOTO Y Y, et al. Plant Biotechnology, 2008, 25(1):113.
    [27]
    MATUO Y, NISHIJIMA S, HASE Y, et al. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 602(1):7.
  • Related Articles

    [1]N. J. Dalal, WU Zhongwen, DING Xiaobin, XIE Luyou, DONG Chenzhong. Theoretical Study on K, L, and M X-ray Transition Energies and Rates of Am and Its Ions Amq+(q=1~6)[J]. Nuclear Physics Review, 2019, 36(1): 111-117. DOI: 10.11804/NuclPhysRev.36.01.111
    [2]ANG Rui-ping, WANG Shun-jin, ZUO Wei. Using NSM to Calculate Transition Rates of 143Pm[J]. Nuclear Physics Review, 2006, 23(3): 284-289. DOI: 10.11804/NuclPhysRev.23.03.284
    [3]ZHANG Qi-ren. Non-integer Quantum Transitions[J]. Nuclear Physics Review, 2005, 22(4): 305-309. DOI: 10.11804/NuclPhysRev.22.04.305
    [4]Zhaorigetu, BAI Hong-bo, ZHANG Jin-fu. Low lying Spectra and E2 Transition Rates in Even-even 142—164Dy Isotopes in Interaction Boson Model[J]. Nuclear Physics Review, 2005, 22(2): 167-171. DOI: 10.11804/NuclPhysRev.22.02.167
    [5]DONG Yu-bing, HE Jun. Electromagnetic Transition Amplitudes of Nucleon Negative parity Resonance by OPE and OGE Quark Models[J]. Nuclear Physics Review, 2004, 21(2): 157-158. DOI: 10.11804/NuclPhysRev.21.02.157
    [6]MU Zhi-dong, WEI Qi-ying. Intercombination Transitions 3s3p 3P1—3s21S0 in Magnesium like Ions through KⅧ to TbLⅣ[J]. Nuclear Physics Review, 2004, 21(1): 65-69. DOI: 10.11804/NuclPhysRev.21.01.065
    [7]BAI Hong-bo, LIU Feng-ying, LI Yan-song, ZHOU Xian-rong, ZHANG Jin-fu. Low-lying Spectra and E2 Transition Rates in Even-even 62-76Zn Isotopes in Interaction Boson Model[J]. Nuclear Physics Review, 2003, 20(3): 176-181. DOI: 10.11804/NuclPhysRev.20.03.176
    [8]LI Shu-min, CHEN Ji, HOU Zi-fang, ZHANG Sheng-tao. Laser-assisted Electron-atomic-hydrogen Free-free Transition[J]. Nuclear Physics Review, 2002, 19(2): 242-244. DOI: 10.11804/NuclPhysRev.19.02.242
    [9]ZHANG Sheng- tao, CHEN Ji, LI Shu-min. Free-free Transition in Presence of a Resonant Bichromatic Laser Field[J]. Nuclear Physics Review, 2002, 19(Suppl): 77-80. DOI: 10.11804/NuclPhysRev.19.S1.077
    [10]ZHANG Guo-ying, HAN Kui, YIN Chun-hao, WU Yu-xi. The Influence of the Ionicity Effect on the Transition Probabilities of Heavy Hydrogenlike Ions[J]. Nuclear Physics Review, 2002, 19(Suppl): 7-9. DOI: 10.11804/NuclPhysRev.19.S1.007

Catalog

    Article Metrics

    Article views (1403) PDF downloads (199) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return