Advanced Search
ZHAO Yumin. Beauty and Strangeness in Eigenvalues of Nuclear Shell Model Hamiltonian[J]. Nuclear Physics Review, 2013, 30(3): 260-267. DOI: 10.11804/NuclPhysRev.30.03.260
Citation: ZHAO Yumin. Beauty and Strangeness in Eigenvalues of Nuclear Shell Model Hamiltonian[J]. Nuclear Physics Review, 2013, 30(3): 260-267. DOI: 10.11804/NuclPhysRev.30.03.260

Beauty and Strangeness in Eigenvalues of Nuclear Shell Model Hamiltonian

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • The eigenvalue problem is one of the fundamental issues of sciences. Many research fields have been challenged by diagonalizing huge matrices. The nuclear structure theorists face this problem in studies of medium-heavy
    nuclei in terms of the nuclear shell model, in which the configuration space is too gigantic to handle. Thus one usually truncates the nuclear shell model configuration space based on various considerations. Another approach is to make use of super computers by various algorithms, and/or to obtain approximate eigenvalues. In this paper we review our recent efforts in obtaining approximate eigenvalues of the nuclear shell model Hamiltonian, with the focus on our semi-empirical approach and a number of extrapolation approaches towards predicting the lowest eigenvalue, as well as strong correlation between the sorted eigenvalues and the diagonal matrix elements, and so on.
  • Related Articles

    [1]Baoyue HU, Yuqing WU, Wei TENG, Jing HU, Yu ZHANG. The SU(3) Algorithm and Simple Application of the Proton-neutron Interacting Boson Model[J]. Nuclear Physics Review, 2021, 38(4): 368-372. DOI: 10.11804/NuclPhysRev.38.2021059
    [2]Junji JIANG, Rui JIN, Hankui WANG. Spectral Structure Analysis of Nuclei 14C, 14,15N, and 14-18O Near Double Magic Nucleus 16O by Shell Model Calculations[J]. Nuclear Physics Review, 2020, 37(3): 563-568. DOI: 10.11804/NuclPhysRev.37.2019CNPC54
    [3]Yao ZHOU, Jarah Evslin. Generalization of Squeeze Operator in Free Scalar Field Theory[J]. Nuclear Physics Review, 2020, 37(2): 172-179. DOI: 10.11804/NuclPhysRev.37.2020007
    [4]QIN Wei, WANG Hankui, SUN Yang, ZHANG Xiantu, WANG Lihua, ZHAO Linlin, WANG Yujie. Truncation Effects in the Shell-model Calculations at Neutron-rich Hole Nuclei Close to 132Sn[J]. Nuclear Physics Review, 2017, 34(3): 488-492. DOI: 10.11804/NuclPhysRev.34.03.488
    [5]YUAN Cenxi, ZHANG Min, LAN Nianwu, FANG Youjun. Two-nucleon Excitation from p to sd Shell in 12,14C[J]. Nuclear Physics Review, 2016, 33(2): 246-249. DOI: 10.11804/NuclPhysRev.33.02.246
    [6]JIAO Longfei, XU Furong. Shell-model Truncated Calculation in Correlated Basis[J]. Nuclear Physics Review, 2014, 31(4): 438-443. DOI: 10.11804/NuclPhysRev.31.04.438
    [7]ZHAO Yu-min. Eigenvalues of Large Matrices[J]. Nuclear Physics Review, 2009, 26(S1): 165-167. DOI: 10.11804/NuclPhysRev.26.S1.165
    [8]LUO Yan-an, LI Lei, ZHANG Xiao-bing, TAN Yu-hong, NING Ping-zhi. Contemporary Nuclear Shell Models[J]. Nuclear Physics Review, 2002, 19(4): 365-372. DOI: 10.11804/NuclPhysRev.19.04.365
    [9]ZHOU Shan-gui, ZHENG Chun-kai, XU Fu-rong, HU Ji-min. Study on Superdeformed Nuclei in A ~190 Region with Cranking Bohr Mottelson Hamiltonian[J]. Nuclear Physics Review, 1997, 14(2): 69-74. DOI: 10.11804/NuclPhysRev.14.02.069
    [10]张敬业. 关于核形状及对关联随自旋及组态变化规律的探讨[J]. Nuclear Physics Review, 1987, 4(2): 1-6. DOI: 10.11804/NuclPhysRev.04.02.001

Catalog

    Article Metrics

    Article views (1897) PDF downloads (450) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return