高级检索
黄旭光. 强磁场与涡旋场中的夸克胶子物质[J]. 原子核物理评论, 2020, 37(3): 414-425. DOI: 10.11804/NuclPhysRev.37.2019CNPC29
引用本文: 黄旭光. 强磁场与涡旋场中的夸克胶子物质[J]. 原子核物理评论, 2020, 37(3): 414-425. DOI: 10.11804/NuclPhysRev.37.2019CNPC29
Xuguang HUANG. Quark Gluon Matter in Strong Magnetic and Vortical Fields[J]. Nuclear Physics Review, 2020, 37(3): 414-425. DOI: 10.11804/NuclPhysRev.37.2019CNPC29
Citation: Xuguang HUANG. Quark Gluon Matter in Strong Magnetic and Vortical Fields[J]. Nuclear Physics Review, 2020, 37(3): 414-425. DOI: 10.11804/NuclPhysRev.37.2019CNPC29

强磁场与涡旋场中的夸克胶子物质

Quark Gluon Matter in Strong Magnetic and Vortical Fields

  • 摘要: 相对论重离子碰撞可以产生高温的夸克胶子物质,同时也产生极强的电磁场和流体涡旋。在强电磁场和涡旋场中的夸克胶子物质呈现出新奇的宏观量子现象,比如手征磁效应、手征涡效应、手征分离效应、手征电分离效应、自旋极化现象等。它们一方面给我们提供了可以探测高温下量子色动力学的非平庸规范场拓扑结构、强相互作用的宇称破坏、夸克胶子物质中的自旋动力学等的实验手段,另一方面也与物理学其他分支,比如粒子物理、凝聚态物理、天体物理、冷原子物理等发生紧密联系,形成新的交叉研究领域。本文旨在对这些宏观量子现象的产生机制以及它们在相对论重离子碰撞中的探测等做一回顾和展望。特别地,我们揭示出重离子碰撞的磁场强度可以达到10^18\sim 10^20 G,流体涡旋可以达到10^22 s–1;这是我们已知当前宇宙中最强的磁场和流体涡旋。我们定量地对同量素碰撞实验做了分析,发现即便背景比例达到93%以上,当前的同量素碰撞实验仍然可在大约3\sigma的显著性水平上判断是否有手征磁效应的发生。我们系统地给出了满足因果律的自旋流体力学方程,并推导了其中的集体激发模式,这将有助于理解超子自旋极化中出现的符号问题。

     

    Abstract: Relativistic heavy-ion collisions generate high-temperature quark gluon plasma with extremely strong electromagnetic and fluid vortical fields. The quark gluon plasma exhibits intriguing macroscopic quantum phenomena in the presence of strong electromagnetic and vortical fields, e.g., the chiral magnetic effect, chiral vortical effects, chiral separation effect, chiral electric separation effect, and spin polarization. These phenomena provide us a unique experimental means to study the nontrivial topological sector of the quantum chromodynamics, e.g., possible parity violation of strong interaction at high temperature, and subatomic spintronics of quark gluon plasma. They are also closely related to other subfields of physics, such as particle physics, condensed matter physics, astrophysics, and cold atomic physics, and thus form a new interdisciplinary research area. The goal of the present article is to give an introduction to these phenomena and to review the current status of their experimental search in heavy-ion collisions. In particular, we find that the magnetic fields generated in heavy-ion collisions can reach 10^18\sim 10^20 G and the fluid vorticity can reach 10^22 s–1; these are the known strongest magnetic fields and vorticity in the current universe. We quantitatively analyze the isobar collisions and find that, even if the background level is of 93%, the current isobar collisions can still test the occurrence of the chiral magnetic effect at 3\sigma significance level. We give the causal set of equations of spin hydrodynamics and give the collective modes in it; the spin hydrodynamics is useful to resolve the sign problem appearing in the comparison between theoretical calculations and experimental measurements of the spin polarization of hyperons.

     

/

返回文章
返回