高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化温度对ZnS薄膜生长质量的影响

宋力刚 朱特 曹兴忠 张仁刚 况鹏 靳硕学 张鹏 龚毅豪 王宝义

宋力刚, 朱特, 曹兴忠, 张仁刚, 况鹏, 靳硕学, 张鹏, 龚毅豪, 王宝义. 硫化温度对ZnS薄膜生长质量的影响[J]. 原子核物理评论, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
引用本文: 宋力刚, 朱特, 曹兴忠, 张仁刚, 况鹏, 靳硕学, 张鹏, 龚毅豪, 王宝义. 硫化温度对ZnS薄膜生长质量的影响[J]. 原子核物理评论, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
Citation: SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651

硫化温度对ZnS薄膜生长质量的影响

doi: 10.11804/NuclPhysRev.34.03.651
基金项目: 国家自然科学基金资助项目(11505205,11505192);湖北省教育厅科研计划项目(D20121109)
详细信息
    作者简介:

    宋力刚(1992-),男,湖北武穴人,硕士研究生,从事物理学研究;E-mail:songlg@ihep.ac.cn

    通讯作者: 曹兴忠,E-mail:caoxzh@ihep.ac.cn;张仁刚,E-mai:whzrg@126.com
  • 中图分类号: O782+.7

Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film

Funds: National Natural Science Foundation of China (11505205, 11505192); Educational Department of Hubei Province(D20121109)
More Information
    Corresponding author: 10.11804/NuclPhysRev.34.03.651
  • 摘要: 采用热反应法对玻璃衬底上以磁控溅射制备的Zn薄膜进行硫化,制备出ZnS薄膜。薄膜的微观结构、物相结构和表面形貌分别采用正电子湮没技术(PAT)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)进行分析和表征。利用慢正电子湮没多普勒展宽对四个不同硫化温度下得到的ZnS薄膜样品中膜层结构缺陷进行研究,测量了薄膜中的空位型微观缺陷的相对浓度,指出445℃硫化样品中正电子注入能量在1.5~4.5 keV后S参数最小,说明该硫化温度下反应生成的ZnS薄膜结构缺陷浓度最小,膜的致密度最高。XRD结果显示薄膜在445℃以上硫化后,呈(111)择优生长趋势。从扫描电镜的结果也可以看出,在445℃硫化后,薄膜的晶粒明显地变得更大、更致密,这是因为ZnS晶胞比Zn晶胞大以及硫化过程中ZnS固相再结晶的缘故。


    ZnS thin films have been prepared by sulfurizing zinc thin films deposited on glass substrate by magnetron sputtering for two hours. The microstructure defects, crystallizations and surface morphology of zinc films sulfurized at different temperature were analyzed by PAT (positron annihilation technique), XRD(X-ray diffraction) and SEM (Scanning electron microscopy), respectively. For analyzing the structure defect of four samples with different sulfurization temperature, PAT has been used to obtain the relative concentration of defects. With the positron energy range of 1.5~4.5 keV, the S parameter of ZnS films is minimum. It demonstrates that ZnS films produced at 445℃ have the minimum structural defect concentration and the highest density. XRD results show that films are blende structure with the preference of (111) orientation above 445℃. And from the result of SEM, because of ZnS films recrystallization, the crystal grains obviously become large and dense at 445℃.
  • [1] WANG Caifeng, HU Bo, LI Weibing, et al. Optik, 2014, 125(1):554.
    [2] BENYAHIA K, BENHAYA A, AIDA M S. Journal of Semiconductors, 2015, 30:103001.
    [3] NAGHAVI N, ABOU-RAS D, ALLSOP N, et al. Progress In Photovoltaics, 2010, 18(6):411.
    [4] HWANG D, AHN J, HUI K. Nanoscale Res Lett, 2012, 7:1.
    [5] HUA Yinqun, YU Jie, CHEN Ruifang, et al. Adv Mater Res-Switz, 2011, 194:2259.
    [6] MIAO Yiming, DENG Jinxiang, DUAN Ping, et al. Vaccum, 2015, 52(1):27. (in Chinese) (苗一鸣, 邓金祥, 段苹, 等. 真空, 2015, 52(1):27.)
    [7] XIE Jing, LI Bing, LI Yuanjie, et al. Acta Phys Sin, 2010, 59(8):5749. (in Chinese) (谢婧, 黎兵, 李愿杰, 等. 物理学报, 2010, 59(8):5749.)
    [8] LIU Zhaohong, CHEN Mouzhi, LIN Aiqing, et al. Semiconductor Information, 1998, 35(1):45. (in Chinese) (柳兆洪, 陈谋智, 林爱清, 等. 半导体情报, 1998, 35(1):45.)
    [9] LIU Zhaohong, LIU Ruitang, SUN shunong, et al. Research & Progress of SSE, 1997, 17(4):347. (in Chinese) (柳兆洪, 刘瑞堂, 孙书农, 等. 固体电子学研究与进展, 1997, 17(4):347.)
    [10] ZHANG Lihong, CHENGBin, Zhang Jie, et al. Sci Sin:Phys Mech Astron, 2012, 42:1217. (in Chinese) (张礼红, 成斌, 张杰, 等. 中国科学:物理学力学天文学, 2012, 42:1217.)
    [11] XIE Qiyun, WU Liaoshan. Physics, 2012, 41(11):727. (in Chinese) (解其云, 吴小山. 物理, 2012, 41(11):727.)
    [12] CHEN Li, XU Jun, CHEN Jing. Science China:Earth Sciences, 2015, 45(9):1347. (in Chinese) (陈莉, 徐军, 陈晶. 中国科学:地球科学, 2015, 45(9):1347.)
    [13] PATHAK T K, KUMAR V, PUROHIT L P, et al. Physica E, 2016, 84:530.
    [14] ZHONG Weizhuo, LUO Haosu, HUA Sukun, et al. Journal of Synthetic Crystals, 2004, 33(4):471. (in Chinese) (仲维卓, 罗豪甦, 华素坤, 等. 人工晶体学报, 2004, 33(4):471.)
    [15] HAN Rongdian, YE Bangjiao, WENG Huimin, et al. Progress in Physics, 1999, 19(3):306. (in Chinese) (韩荣典, 叶邦角, 翁惠民, 等. 物理学进展, 1999, 19(3):306.)
  • [1] 杨光, 张仁刚, 陈书真, 柯进林, 曹兴忠, 张鹏, 于润升, 王宝义.  低温硫化制备ZnS薄膜的物理性质研究 . 原子核物理评论, 2020, 37(3): 1-5. doi: 10.11804/NuclPhysRev.37.2019CNPC02
    [2] 龚毅豪, 靳硕学, 卢二阳, 况鹏, 朱特, 曹兴忠, 王宝义.  铁冷轧形变以及热处理对形变缺陷的影响 . 原子核物理评论, 2017, 34(3): 646-650. doi: 10.11804/NuclPhysRev.34.03.646
    [3] 张校铭, 张子民, 宗阳, 曹树春, 申晓康, 李中平, 刘铭.  ILC正电子源靶接触热传导冷却技术的初步研究 . 原子核物理评论, 2016, 33(3): 291-296. doi: 10.11804/NuclPhysRev.33.03.291
    [4] 暴一品, 李刘合, 刘峻曦, 张骁.  高功率脉冲磁控溅射研究进展 . 原子核物理评论, 2015, 32(S1): 52-58. doi: 10.11804/NuclPhysRev.32.S1.52
    [5] 李金海, A. A. Rossi, V. Palmieri.  磁控溅射多层沉积Nb3Sn超导薄膜 . 原子核物理评论, 2015, 32(S1): 59-63. doi: 10.11804/NuclPhysRev.32.S1.59
    [6] 李辉, 周凯, 王柱#, 陈志权, 王少阶.  一种基于Windows界面的正电子湮没谱分析软件包 . 原子核物理评论, 2011, 28(3): 315-320. doi: 10.11804/NuclPhysRev.28.03.315
    [7] 左翼, 郑永男, 周冬梅, 杜恩鹏, 袁大庆, 段晓, 朱升云.  PdAgHx金属氢化物正电子湮没研究 . 原子核物理评论, 2005, 22(1): 115-117. doi: 10.11804/NuclPhysRev.22.01.115
    [8] 施立群, 金钦华, 刘超卓, 徐世林, 周筑颖.  直流磁控溅射沉积含He钛膜的研究 . 原子核物理评论, 2005, 22(1): 148-152. doi: 10.11804/NuclPhysRev.22.01.148
    [9] 王少阶.  正电子能量转换研究进展 . 原子核物理评论, 2004, 21(4): 284-285. doi: 10.11804/NuclPhysRev.21.04.284
    [10] 叶邦角, 翁惠民, 周先意, 韩荣典.  正电子寿命-动量关联技术 . 原子核物理评论, 2003, 20(3): 213-217. doi: 10.11804/NuclPhysRev.20.03.213
    [11] 孙志红.  用模型势方法研究正电子与稀有气体的弹性散射 . 原子核物理评论, 2002, 19(Suppl): 73-76. doi: 10.11804/NuclPhysRev.19.S1.073
    [12] 李书民, 陈激, 周子舫, 张声涛.  激光场中正电子对反质子的辐射复合反应 . 原子核物理评论, 2002, 19(Suppl): 148-150. doi: 10.11804/NuclPhysRev.19.S1.148
    [13] 魏龙, 陈红民, 于润升, 王宝义, 张天保, 郁伟中, 何元金, 王天民.  一种新的灵敏核探针——慢正电子束流装置 . 原子核物理评论, 2000, 17(2): 117-120. doi: 10.11804/NuclPhysRev.17.02.117
    [14] 张勇, 姚淑德, 周生强, 刘广智.  高能电子和正电子在晶体沟道中的辐射 . 原子核物理评论, 2000, 17(4): 240-242. doi: 10.11804/NuclPhysRev.17.04.240
    [15] 唐昶环, 严美琼, 张一云, 陈世国.  用正电子湮没技术研究加强型交联聚乙烯热收缩制品 . 原子核物理评论, 1998, 15(1): 57-60. doi: 10.11804/NuclPhysRev.15.01.057
    [16] 王波, 李世清, 王采林, 王少阶.  正电子湮没技术在聚合物材料科学研究中的应用 . 原子核物理评论, 1993, 10(1): 34-38. doi: 10.11804/NuclPhysRev.10.01.034
    [17] 沈子威, 陆祖荫.  慢正电子的应用 . 原子核物理评论, 1989, 6(2): 44-46. doi: 10.11804/NuclPhysRev.06.02.044
    [18] 王少阶.  正电子湮没与高科技 . 原子核物理评论, 1989, 6(3): 23-26. doi: 10.11804/NuclPhysRev.06.03.023
    [19] 鲁振龙.  正电子发射断层扫描的医学应用 . 原子核物理评论, 1987, 4(1): 35-39. doi: 10.11804/NuclPhysRev.04.01.035
    [20] 苏世漳, 马如璋, 徐安泰, 王欣竹, 冯永荣, 黄茄茵, 滕霞, 王蕴玉, 何永枢, 黄懋容.  一些合金相变问题的正电子湮没方法研究 . 原子核物理评论, 1985, 2(3): 27-30. doi: 10.11804/NuclPhysRev.02.03.027
  • 加载中
计量
  • 文章访问数:  431
  • HTML全文浏览量:  42
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-06
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-09-20

硫化温度对ZnS薄膜生长质量的影响

doi: 10.11804/NuclPhysRev.34.03.651
    基金项目:  国家自然科学基金资助项目(11505205,11505192);湖北省教育厅科研计划项目(D20121109)
    作者简介:

    宋力刚(1992-),男,湖北武穴人,硕士研究生,从事物理学研究;E-mail:songlg@ihep.ac.cn

    通讯作者: 曹兴忠,E-mail:caoxzh@ihep.ac.cn;张仁刚,E-mai:whzrg@126.com
  • 中图分类号: O782+.7

摘要: 采用热反应法对玻璃衬底上以磁控溅射制备的Zn薄膜进行硫化,制备出ZnS薄膜。薄膜的微观结构、物相结构和表面形貌分别采用正电子湮没技术(PAT)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)进行分析和表征。利用慢正电子湮没多普勒展宽对四个不同硫化温度下得到的ZnS薄膜样品中膜层结构缺陷进行研究,测量了薄膜中的空位型微观缺陷的相对浓度,指出445℃硫化样品中正电子注入能量在1.5~4.5 keV后S参数最小,说明该硫化温度下反应生成的ZnS薄膜结构缺陷浓度最小,膜的致密度最高。XRD结果显示薄膜在445℃以上硫化后,呈(111)择优生长趋势。从扫描电镜的结果也可以看出,在445℃硫化后,薄膜的晶粒明显地变得更大、更致密,这是因为ZnS晶胞比Zn晶胞大以及硫化过程中ZnS固相再结晶的缘故。


ZnS thin films have been prepared by sulfurizing zinc thin films deposited on glass substrate by magnetron sputtering for two hours. The microstructure defects, crystallizations and surface morphology of zinc films sulfurized at different temperature were analyzed by PAT (positron annihilation technique), XRD(X-ray diffraction) and SEM (Scanning electron microscopy), respectively. For analyzing the structure defect of four samples with different sulfurization temperature, PAT has been used to obtain the relative concentration of defects. With the positron energy range of 1.5~4.5 keV, the S parameter of ZnS films is minimum. It demonstrates that ZnS films produced at 445℃ have the minimum structural defect concentration and the highest density. XRD results show that films are blende structure with the preference of (111) orientation above 445℃. And from the result of SEM, because of ZnS films recrystallization, the crystal grains obviously become large and dense at 445℃.

English Abstract

宋力刚, 朱特, 曹兴忠, 张仁刚, 况鹏, 靳硕学, 张鹏, 龚毅豪, 王宝义. 硫化温度对ZnS薄膜生长质量的影响[J]. 原子核物理评论, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
引用本文: 宋力刚, 朱特, 曹兴忠, 张仁刚, 况鹏, 靳硕学, 张鹏, 龚毅豪, 王宝义. 硫化温度对ZnS薄膜生长质量的影响[J]. 原子核物理评论, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
Citation: SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
参考文献 (15)

目录

    /

    返回文章
    返回