高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)

孟海燕 王华磊 柴清祯 张莎 杨婕 柳敏良

孟海燕, 王华磊, 柴清祯, 张莎, 杨婕, 柳敏良. 可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)[J]. 原子核物理评论, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
引用本文: 孟海燕, 王华磊, 柴清祯, 张莎, 杨婕, 柳敏良. 可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)[J]. 原子核物理评论, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
Citation: MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481

可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)

doi: 10.11804/NuclPhysRev.34.03.481
基金项目: 国家自然科学基金资助项目(11675148);郑州大学优秀青年教师发展基金(1521317002);郑州大学物理学科推进计划项目(32410017);河南省基础与前沿技术研究计划项目(162300410222)
详细信息
    通讯作者: 王华磊,E-mail:wanghualei@zzu.edu.cn
  • 中图分类号: O571.42

Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations

Funds: National Natural Science Foundation of China(11675148); Outstanding Young Talent Research Fund of Zhengzhou University (1521317002); Physics Research and Development Program of Zhengzhou University (32410017); Foundation and Advanced Technology Research Program of Henan Province (162300410222)
More Information
    Corresponding author: 10.11804/NuclPhysRev.34.03.481
  • 摘要: 基于(β2,γ,β4)形变空间下对-形变自洽的原子核能量面计算方法,系统研究分析了50 < Z < 82区偶偶核的形状及硬度演化特征。计算的平衡形变与其它理论预言及存在的实验值进行了对比。从相应的形变势能曲线提取了与β2及γ相关的硬度参数CβCγ,这与实验观测到的低位β及γ振动带信息相符。还简要讨论了转动情况下的硬度演化,例如基于蜈蚣型E-GOS曲线,表明存在不可忽略的振动效应。


    Nuclear shape and stiffness evolutions in even-even nuclei with 50 < Z < 82 are systematically analyzed in terms of the pairing-deformation self-consistent nuclear-energy-surface calculation in (β2,γ,β4) deformation space. Calculated equilibrium deformations are presented and compared with other theoretical predictions and available experimental data. The stiffness parameters Cβ and Cγ respectively related to quadrupole deformations β2 and γ are determined from the deformation energy curves, which are consistent with the observed low-lying β and/or γ bands. The stiffness evolution under rotation along the yrast line is briefly discussed, e.g., on the basis of the centipidelike E-GOS curves, showing an unnegligible vibration effect.
  • [1] BOHR A, MOTTELSON B R. Nuclear Structure[M]. Singapore:World Scientific Publishing, 1998.
    [2] FRAUENDORF S. Rev Mod Phys, 2001, 73:463.
    [3] YANG Q, WANG H L, LIU M L, et al. Phys Rev C, 2016, 94:024310.
    [4] YANG J, WANG H L, LIU M L, et al. Prog Theor Exp Phys, 2016, 063D03.
    [5] WANG H L, YANG J, LIU M L, et al. Phys Rev C, 2015, 92:024303.
    [6] WANG H L, ZHANG S, LIU M L, et al. Prog Theor Exp Phys, 2015, 073D03.
    [7] CHAI Q Z, WANG H L, YANG Q, et al. Chin Phys C, 2015, 39:024101.
    [8] YANG Q, WANG H L, CHAI Q Z, et al. Chin Phys C, 2015, 39:094102.
    [9] WANG H L, LIU H L, XU F R, et al. Prog Theor Phys, 2012, 128:363.
    [10] XU F R, WALKER P M, SHEIKH J A, et al. Phys Lett B, 1998, 435:257.
    [11] NAZAREWICZ W, LEANDER G A, DUDEK J. Nucl Phys A, 1987, 467:437.
    [12] SATU LA W, WYSS R, MAGIERSKI P. Nucl Phys A, 1994, 578:45.
    [13] MÖLLER P, NIX J R. Nucl Phys A, 1981, 361:117.
    [14] MYERS W D, SWIATECKI W J. Nucl Phys A, 1966, 81:1.
    [15] NAZAREWICZ W, RILLEY M A, GARRETT J D. Nucl Phys A, 1990, 512:61.
    [16] STRUTINSKY V M. Nucl Phys A, 1967, 95:420.
    [17] NAZAREWICZ W, DUDEK J, BENGTSSON R, et al. Nucl Phys A, 1985, 435:397.
    [18] CWIOK S, DUDEK J, NAZAREWICZ W, et al. Comp Phys Comm, 1987, 46:379.
    [19] PRADHAN H C, NOGAMI Y, LAW J. Nucl Phys A, 1973, 201:357.
    [20] BHAGWAT A, VIÑAS X, CENTELLES M, et al. Phys Rev C, 2010, 81:044321.
    [21] SATU LA W, WYSS R. Rep Prog Phys, 2005, 68:131, and references cited therein.
    [22] CASTEN R F, BRENNER D S, HAUSTEIN P E. Phys Rev Lett, 1987, 58:658.
    [23] FOULADI N, FOULADI J, SABRI H. Eur Phys J Plus, 2015, 130:112.
    [24] CASTEN R F. Phys Rev Lett, 1985, 54:1991.
    [25] CASTEN R F. Nucl Phys A, 1985, 443:1.
    [26] CASTEN R F, ZAMFIR N V. J Phys G:Nucl Part Phys, 1996, 22:1521.
    [27] MALLMANN C A. Phys Rev Lett, 1959, 2:507.
    [28] GUPTA J B. Int J Mod Phys E, 2013, 22:1350023.
    [29] IACHELLO F. Phys Rev Lett, 2001, 87:052502.
    [30] MÖLLER P, NIX J R, MYERS W D, et al. At Data Nucl Data Tables, 1995, 59:185.
    [31] RAMAN S, NESTOR C W, TIKKANEN P, et al. At Data Nucl Data Tables, 2001, 78:1.
    [32] DUDEK J, NAZAREWICZ W, OLANDERS P. Nucl Phys A, 1984, 420:285.
    [33] ANDERSSON G, LARSSON S E, LEANDER G, et al. Nucl Phys A, 1976, 268:205.
    [34] NAZAREWICZ W, OLANDERS P, RAGNARSSON I, et al. Nucl Phys A, 1984, 429:269.
    [35] BUTLER P A, NAZAREWICZ W. Rev Mod Phys, 1996, 68:349.
    [36] REGAN P H, BEAUSANG C W, ZAMFIR N V, et al. Phys Rev Lett, 2003, 90:152502.
    [37] XU F R, WYSS R, WALKER P M. Phys Rev C, 1999, 60:051301.
    [38] KIBÉDI T, DRACOULIS, BYRNE A P, DAVIDSON P M. Nucl Phys A, 2001, 688:669.
    [39] KIBÉDI T, DRACOULIS G D, BYRNE A P, et al. Nucl Phys A, 1994, 567:183.
    [40] DAVIDSON P M, DRACOULIS G D, KIBÉDI T. Nucl Phys A, 1999, 657:219.
  • 加载中
计量
  • 文章访问数:  1265
  • HTML全文浏览量:  147
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-30
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-07-18

可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)

doi: 10.11804/NuclPhysRev.34.03.481
    基金项目:  国家自然科学基金资助项目(11675148);郑州大学优秀青年教师发展基金(1521317002);郑州大学物理学科推进计划项目(32410017);河南省基础与前沿技术研究计划项目(162300410222)
    通讯作者: 王华磊,E-mail:wanghualei@zzu.edu.cn
  • 中图分类号: O571.42

摘要: 基于(β2,γ,β4)形变空间下对-形变自洽的原子核能量面计算方法,系统研究分析了50 < Z < 82区偶偶核的形状及硬度演化特征。计算的平衡形变与其它理论预言及存在的实验值进行了对比。从相应的形变势能曲线提取了与β2及γ相关的硬度参数CβCγ,这与实验观测到的低位β及γ振动带信息相符。还简要讨论了转动情况下的硬度演化,例如基于蜈蚣型E-GOS曲线,表明存在不可忽略的振动效应。


Nuclear shape and stiffness evolutions in even-even nuclei with 50 < Z < 82 are systematically analyzed in terms of the pairing-deformation self-consistent nuclear-energy-surface calculation in (β2,γ,β4) deformation space. Calculated equilibrium deformations are presented and compared with other theoretical predictions and available experimental data. The stiffness parameters Cβ and Cγ respectively related to quadrupole deformations β2 and γ are determined from the deformation energy curves, which are consistent with the observed low-lying β and/or γ bands. The stiffness evolution under rotation along the yrast line is briefly discussed, e.g., on the basis of the centipidelike E-GOS curves, showing an unnegligible vibration effect.

English Abstract

孟海燕, 王华磊, 柴清祯, 张莎, 杨婕, 柳敏良. 可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)[J]. 原子核物理评论, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
引用本文: 孟海燕, 王华磊, 柴清祯, 张莎, 杨婕, 柳敏良. 可能的原子核形状及硬度演化性质:基于能量面计算的系统分析(英文)[J]. 原子核物理评论, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
Citation: MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
参考文献 (40)

目录

    /

    返回文章
    返回