高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于手征微扰理论构建相对论重子-重子相互作用(英文)

任修磊 李凯文 耿立升

任修磊, 李凯文, 耿立升. 基于手征微扰理论构建相对论重子-重子相互作用(英文)[J]. 原子核物理评论, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
引用本文: 任修磊, 李凯文, 耿立升. 基于手征微扰理论构建相对论重子-重子相互作用(英文)[J]. 原子核物理评论, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
REN Xiulei, LI Kaiwen, GENG Lisheng. Towards a Relativistic Formulation of Baryon-baryon Interactions in Chiral Perturbation Theory[J]. Nuclear Physics Review, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
Citation: REN Xiulei, LI Kaiwen, GENG Lisheng. Towards a Relativistic Formulation of Baryon-baryon Interactions in Chiral Perturbation Theory[J]. Nuclear Physics Review, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392

基于手征微扰理论构建相对论重子-重子相互作用(英文)

doi: 10.11804/NuclPhysRev.34.03.392
基金项目: 国家自然科学基金资助项目(11375024,11522539,11735003,11335002,11621131001);中国博士后科学基金项目(2016M60084,2017T100008).
详细信息
    通讯作者: 耿立升,E-mail:mailto:lisheng.geng@buaa.edu.cn
  • 中图分类号: O572.3

Towards a Relativistic Formulation of Baryon-baryon Interactions in Chiral Perturbation Theory

Funds: National Natural Science Foundation of China (11375024, 11522539, 11335002, 11621131001); China Postdoctoral Science Foundation (2016M600845, 2017T100008)
More Information
    Corresponding author: 10.11804/NuclPhysRev.34.03.392
  • 摘要: 介绍了两个近期基于协变手征微扰理论构建领头阶核子-核子和超子-核子相互作用的工作。理论中未知的低能常数通过拟合核子-核子和超子-核子散射实验数据确定。分析发现,在对散射数据的描述上,领头阶相对论手征力可以媲美次领头阶非相对论手征核力。研究表明,构建相对论手征重子-重子相互作用技术上是可行的。得到的相互作用不仅可以为相对论核结构及反应研究提供重要的理论输入,而且可以进一步加深对低能强相互作用的认识。


    In this paper, we report on two recent studies of relativistic nucleon-nucleon and hyperonnucleon interactions in covariant chiral perturbation theory, where they are constructed up to leading order. The relevant unknown low energy constants are fixed by fitting to the nucleon-nucleon and hyperon-nucleon scattering data. It is shown that these interactions can describe the scattering data with a quality similar to their next-to-leading order non-relativistic counterparts. These studies show that it is technically feasible to construct relativist baryon-baryon interactions, and in addition, after further refinements, these interactions may provide important inputs to ab initio relativistic nuclear structure and reaction studies and help improve our understanding of low energy strong interactions.
  • [1] BEANE S R, DETMOLD W, ORGINOS K, et al. Prog Part Nucl Phys, 2011, 66:1.
    [2] AOKI S, DOI T, HATSUDA T, et al.[HAL QCD Collaboration]. PTEP, 2012, 2012:01A105.
    [3] DOI T, AOKI S, GONGYO S, et al. arXiv:1702.01600[heplat].
    [4] SASAKI K, AOKI S, DOI T, et al. arXiv:1702.06241[heplat].
    [5] ISHⅡ N, AOKI S, DOI T, et al. arXiv:1702.03495[hep-lat].
    [6] YUKAWA H. Proc Phys Math Soc Jap, 1935, 17:48;[Prog Theor Phys 1935, 1(Suppl.):1.
    [7] STOKS V G J, KLOMP R A M, TERHEGGEN C P F, et al. Phys Rev C, 1994, 49:2950.
    [8] WIRINGA R B, STOKS V G J, SCHIAVILLA R. Phys Rev C, 1995, 51:38.
    [9] MACHLEIDT R. Adv Nucl Phys, 1989, 19:189.
    [10] MACHLEIDT R. Phys Rev C, 2001, 63:024001.
    [11] RIJKEN T A, STOKS V G J, YAMAMOTO Y. Phys Rev C, 1999, 59:21.
    [12] HAIDENBAUER J, MEIßNER U G. Phys Rev C, 2005, 72:044005.
    [13] WEINBERG S. Physica A, 1979, 96:327.
    [14] WEINBERG S. Phys Lett B, 1990, 251:288.
    [15] WEINBERG S. Nucl Phys B, 1991, 363:3.
    [16] BEDAQUE P F, VAN KOLCK U. Ann Rev Nucl Part Sci, 2002, 52:339.
    [17] ENTEM D R, MACHLEIDT R. Phys Rev C, 2003, 68:041001.
    [18] EPELBAUM E, GLOCKLE W, MEIßNER U G. Nucl Phys A, 2005, 747:362.
    [19] EPELBAUM E, HAMMER H W, MEIßNER U G. Rev Mod Phys, 2009, 81:1773.
    [20] MACHLEIDT R, ENTEM D R. Phys Rept, 2011, 503:1.
    [21] EPELBAUM E, KREBS H, MEIßNER U G. Phys Rev Lett, 2015, 115:122301.
    [22] KANG X W, HAIDENBAUER J, MEIßNER U G. JHEP, 2014, 1402:113.
    [23] DAI L Y, HAIDENBAUER J, MEIßNER U G. arXiv:1702.02065[nucl-th].
    [24] POLINDER H, HAIDENBAUER J, MEIßNER U G. Nucl Phys A, 2006, 779:244.
    [25] HAIDENBAUER J,MEIßNER U G,NOGGA A, et al. Lect Notes Phys, 2007, 724:113.
    [26] HAIDENBAUER J, PETSCHAUER S, KAISER N, et al. Nucl Phys A, 2013, 915:24.
    [27] POLINDER H, HAIDENBAUER J, MEIßNER U G. Phys Lett B, 2007, 653:29.
    [28] HAIDENBAUER J, MEIßNER U G. Phys Lett B, 2010, 684:275.
    [29] HAIDENBAUER J,MEIßNER U G, Petschauer S. Nucl Phys A, 2016, 954:273.
    [30] SCHWERDTFEGER P. Relativistic Electronic Structure Theory, Part I. Fundamentals, Theoretical and Computational Chemistry Vol. 11[M]. Amsterdam:Elsevier Science Press, 2002.
    [31] MENG J. Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics Vol. 10[M]. Singapore:World Scientific, 2016.
    [32] LIANG H, MENG J, ZHOU S G. Phys Rept, 2015, 570:1.
    [33] GENG L S, MARTIN CAMALICH J, ALVAREZ-RUSO L, et al. Phys Rev Lett, 2008, 101:222002.
    [34] GENG L S, MARTIN CAMALICH J, VICENTE VACAS M J. Phys Rev D, 2009, 79:094022.
    [35] GENG L S, REN X L, MARTIN-CAMALICH J, et al. Phys Rev D, 2011, 84:074024.
    [36] REN X L, GENG L S, MARTIN CAMALICH J, et al. JHEP, 2012, 1212:073.
    [37] REN X L, GENG L S, MENG J. Phys Rev D, 2015, 91:051502.
    [38] REN X L, ALVAREZ-RUSO L, GENG L S, et al. Phys Lett B, 2017, 766:325.
    [39] GENG L S, KAISER N, MARTIN-CAMALICH J, et al. Phys Rev D, 2010, 82:054022.
    [40] GENG L S, ALTENBUCHINGER M, WEISE W. Phys Lett B, 2011, 696:390.
    [41] ALTENBUCHINGER M, GENG L S, WEISE W. Phys Lett B, 2012, 713:453.
    [42] LU J X, REN X L, GENG L S. Eur Phys J C, 2017, 77:94.
    [43] SHEN S H, HU J, LIANG H, et al. Chin Phys Lett, 2016, 33(10):102103.
    [44] SHEN S, LIANG H, MENG J, et al. Phys Rev C, 2017, 96:014316.
    [45] REN X L, LI K W, GENG L S, et al. arXiv:1611.08475[nuclth].
    [46] LI K W, REN X L, GENG L S, et al. arXiv:1612.08482[nuclth].
    [47] PARTOVI M H, LOMON E L. Phys Rev D, 1970, 2:1999.
    [48] ERKELENZ K. Phys Rept, 1974, 13:191. doi: 10.1016/0370-1573(74)90008-8.
    [49] BLANKENBECLER R, SUGAR R. Phys Rev,1966, 142:1051.
    [50] THOMPSON R H. Phys Rev D, 1970, 1:110.
    [51] KADYSHEVSKY V G. Nucl Phys B, 1968, 6:125.
    [52] GROSS F. Phys Rev, 1968, 186:1448.
    [53] EPELBAUM E, GEGELIA J. Phys Lett B, 2012, 716:338.
    [54] LI K W, REN X L, GENG L S, et al. Phys Rev D, 2016, 94:014029.
    [55] GIRLANDA L, PASTORE S, SCHIAVILLA R, et al. Phys Rev C, 2010, 81:034005. doi:10.1103/Phys Rev C.81.034005[arXiv:1001.3676[nucl-th]].
    [56] DJUKANOVIC D, GEGELIA J, SCHERER S, et al. Few Body Syst, 2007, 41:141.
    [57] PETSCHAUER S, KAISER N. Nucl Phys A, 2013, 916:1.
    [58] STOKS V G J, KLOMP R A M, RENTMEESTER M C M, et al. Phys Rev C, 1993, 48:792.
    [59] EPELBAUM E, GLOECKLE W, MEIßNER U G. Nucl Phys A, 2000, 671:295.
    [60] ARNDT R A, STRAKOVSKY I I, WORKMAN R L. Phys Rev C, 1994, 50:2731.
    [61] DE SWART J J. Rev Mod Phys, 1963, 35:91; Erratum:Rev Mod Phys, 1968, 37:326.
  • 加载中
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  120
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-19
  • 修回日期:  2017-05-20
  • 刊出日期:  2017-07-18

基于手征微扰理论构建相对论重子-重子相互作用(英文)

doi: 10.11804/NuclPhysRev.34.03.392
    基金项目:  国家自然科学基金资助项目(11375024,11522539,11735003,11335002,11621131001);中国博士后科学基金项目(2016M60084,2017T100008).
    通讯作者: 耿立升,E-mail:mailto:lisheng.geng@buaa.edu.cn
  • 中图分类号: O572.3

摘要: 介绍了两个近期基于协变手征微扰理论构建领头阶核子-核子和超子-核子相互作用的工作。理论中未知的低能常数通过拟合核子-核子和超子-核子散射实验数据确定。分析发现,在对散射数据的描述上,领头阶相对论手征力可以媲美次领头阶非相对论手征核力。研究表明,构建相对论手征重子-重子相互作用技术上是可行的。得到的相互作用不仅可以为相对论核结构及反应研究提供重要的理论输入,而且可以进一步加深对低能强相互作用的认识。


In this paper, we report on two recent studies of relativistic nucleon-nucleon and hyperonnucleon interactions in covariant chiral perturbation theory, where they are constructed up to leading order. The relevant unknown low energy constants are fixed by fitting to the nucleon-nucleon and hyperon-nucleon scattering data. It is shown that these interactions can describe the scattering data with a quality similar to their next-to-leading order non-relativistic counterparts. These studies show that it is technically feasible to construct relativist baryon-baryon interactions, and in addition, after further refinements, these interactions may provide important inputs to ab initio relativistic nuclear structure and reaction studies and help improve our understanding of low energy strong interactions.

English Abstract

任修磊, 李凯文, 耿立升. 基于手征微扰理论构建相对论重子-重子相互作用(英文)[J]. 原子核物理评论, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
引用本文: 任修磊, 李凯文, 耿立升. 基于手征微扰理论构建相对论重子-重子相互作用(英文)[J]. 原子核物理评论, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
REN Xiulei, LI Kaiwen, GENG Lisheng. Towards a Relativistic Formulation of Baryon-baryon Interactions in Chiral Perturbation Theory[J]. Nuclear Physics Review, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
Citation: REN Xiulei, LI Kaiwen, GENG Lisheng. Towards a Relativistic Formulation of Baryon-baryon Interactions in Chiral Perturbation Theory[J]. Nuclear Physics Review, 2017, 34(3): 392-402. doi: 10.11804/NuclPhysRev.34.03.392
参考文献 (61)

目录

    /

    返回文章
    返回