高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子核质量的测量和评估

王猛

王猛. 原子核质量的测量和评估[J]. 原子核物理评论, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
引用本文: 王猛. 原子核质量的测量和评估[J]. 原子核物理评论, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
WANG Meng. Nuclear Mass Measurement and Evaluation[J]. Nuclear Physics Review, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
Citation: WANG Meng. Nuclear Mass Measurement and Evaluation[J]. Nuclear Physics Review, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380

原子核质量的测量和评估

doi: 10.11804/NuclPhysRev.34.03.380
基金项目: 国家重点研发计划资助项目(2016YFA0400504)
详细信息
    作者简介:

    王猛(1977-),男,汉,河南淇县人,研究员,博士,从事实验核物理工作;E-mail:wangm@impcas.ac.cn

  • 中图分类号: O571.21

Nuclear Mass Measurement and Evaluation

Funds: National Key R&D Program of China (2016YFA0400504)
  • 摘要: 质量是原子核的基本性质之一,在核物理和核天体物理中都有重要的应用。原子核质量测量是目前核物理研究的一个前沿热点课题,国际上各个核物理实验室积极发展新设备和新技术,在短寿命放射性核素测量和超高精度质量测量方面取得了重要进展,本文对此进行了总结评述。在兰州重离子加速器冷却储存环(HIRFL-CSR)上利用等时性质量谱仪测量了一些原子核的质量,本文对其在测量精度、核态最短寿命等前沿进展做了简要介绍,并介绍了正在发展的双飞行时间质量谱仪。原子质量评估收集所有与原子核质量相关的实验数据,经过评估后推荐出质量值及相应误差。原子质量评估AME2016于2017年3月发表,为科技工作者提供基准数据。


    Mass is a fundamental property of the atomic nucleus. Nuclear mass data play an important role in nuclear physics and nuclear astrophysics. Thanks to the developments of novel mass spectrometers and radioactive nuclear beam facilities, the experimental knowledge of nuclear masses has been continuously expanding along two main directions, including:measurements aimed at high-precision mass values and at the most exotic nuclei far from the stability. The latest progress are reviewed in the paper. In the past few years, mass measurements of short-lived nuclides were performed using isochronous mass spectrometry based on the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR). The progresses on the frontiers of short half-life and high precision are introduced. The Atomic Mass Evaluation (AME) is the most reliable source for the comprehensive information related to the atomic (nuclear) masses. The latest version of the AME, i.e., AME2016, was published in March, 2017, serving the research community with the benchmark data.
  • [1] LUNNEY D, PEARSON J M, THIBULT C. Reviews of Modern Physics, 2003, 75:1021.
    [2] BLAUM K. Phys Rep, 2006, 425:1.
    [3] MARTIN D, ACRONES A, NAZAREWICZ W, OLSEN E. Phys Rev Lett, 2016, 116:121101.
    [4] MUMPOWER M R, SURMAN R, MCLAUGHLIN G C, et al. Progress in Particle and Nuclear Physics, 2016, 86:86.
    [5] THOMSON J J. Proceedings of the Royal Society A, 1913, 89:1.
    [6] ASTON F W. Nature, 1920, 105:617.
    [7] WAMERS F, MARGANIEC J, AKSOUTH F et al. Phys Rev Lett, 2014, 112:132502.
    [8] SPYROU A, KOHLEY Z, BAUMANN T, et al. Phys Rev Lett, 2012, 108:102501.
    [9] MYERS E G, WAGNER A, KRACKE H, et al. Phys Rev Lett, 2015, 114:013003.
    [10] RAINVILLE S, THOMPSON J K, PRITCHARD D E. Science, 2004, 303:334.
    [11] ERLER J, BIRGE N, KORTELAINEN M, et al. Nature, 2012, 486:509.
    [12] KLAPISCH R, PRIEELS R, THIBAULT C, et al. Phys Rev Lett, 1973, 31:118.
    [13] HUANG W J, AUDI G, WANG M, et al. Chinese Physics C, 2017, 41:030002.
    [14] WANG M, AUDI G, WAPSTRA A H, et al. Chinese Physics C, 2012, 36:1603.
    [15] WANG N, LIU M, WU X Z, et al. Phys Lett B, 2014, 734:215.
    [16] GAUDEFROY L, MITTIG W, ORR N A, et al. Phys Rev Lett, 2012, 109:202503.
    [17] MEISEL Z, GEORGE S, AHN S, et al. Phys Rev Lett, 2015, 114:022501
    [18] MEISEL Z, GEORGE S, AHN S, et al. Phys Rev Lett, 2015, 115:162501.
    [19] WU J, NISHIMURA S, LORUSSO G, et al. Phys Rev Lett, 2017, 118:0722701.
    [20] ROSENBUSCH M, ASCHER P, ATANASOV D, et al. Phys Rev Lett, 2015, 114:202501.
    [21] WIENHOLTZ F, BECK D, BLAUM K, et al. Nature, 2013, 498:346.
    [22] ATANASOV D, ASCHER P, BLAUM K, et al. Phys Rev Lett, 2015, 115:232501.
    [23] ITO Y, SCHURY P, WADA M, et al. Phys Rev C, 2013, 88:011306.
    [24] SCHURY P, WADA M, ITO Y, et al. Phys Rev C, 2017, 95:011305.
    [25] DICKEL T, PLASS W R, AYET SAN ANDRES S, et al. Phys Lett B, 2013, 744:137.
    [26] KREIM S, ATANASOV D, BECK D, et al. Nucl Instr Meth B, 2013, 317:492.
    [27] BLOCK M. Nucl Phys A, 2015, 944:471.
    [28] KETELAER J, BLAUM K, BLOCK M, et al. Eur Phys J A, 2009, 42:311.
    [29] ERONEN T, KOLHINEN V S, ELOMAA V V, et al. Eur Phys J A, 2012, 48:46.
    [30] SAVARD G, WANG J C, SHARMA K S, et al. International Journal of Mass Spectrometry, 2006, 251:252.
    [31] RINGLE R, SCHWARZ S, BOLLEN G, International Journal of Mass Spectrometry, 2013, 349-350:87.
    [32] KWIATKOWSKI A A, ANDREOIU C, BALE J C, et al. Hyperfine Interactions, 2014, 225:143.
    [33] MINAYA-RAMIREZ E, ACKERMANN D, BLAUM K, et al. Science, 2012, 337:1207.
    [34] GEORGE S, BARUAH S, BLANK B, et al. Phys Rev Lett, 2007, 98:162501.
    [35] ETTENAUER S, SIMON M C, GALLANT A T, et al. Phys Rev Lett, 2011, 107:272501.
    [36] ELISEEV S, BLAUM K, BLOCK M, et al. Phys Rev Lett, 2013, 110:082501.
    [37] LITVINOV YU A, GEISSEL H, RADON T, et al. Nucl Phys A, 2005, 756:3.
    [38] CHEN L, WALKER P M, GEISSEL H, et al. Phys Rev Lett, 2013, 110:122502.
    [39] CHEN L, PLASS WR, GEISSEL H, et al. Nucl Phys A, 2012, 882:71.
    [40] SHUBINA D, CAKIRLI R B, LITVINOV YU A, et al. Phys Rev C, 2013, 88:024310.
    [41] SUN B, KNOBEL R, LITVINOV YU A, et al. Nucl Phys A, 2008, 812:1.
    [42] KNOBEL R, DIWISCH M, GEISSEL H, et al. Eur Phys J A, 2016, 52:138
    [43] ZHANG Yuhu, WANG Meng, LITVINOV YU A, et al. Nuclear Physics Review, 2016, 33:122.
    [44] XU X, ZHANG P, SHUAI P, et al. Phys Rev Lett, 2016, 117:182503.
    [45] ZHANG P, XU X, SHUAI P, et al. Physics Letters B, 2017, 767:20.
    [46] ZENG Qi, WANG Meng, ZHANG Yuhu, et al. Nuclear Physics Review, 2016, 34(3):414. doi:10.11804/NuclPhysRev.34.03.414. (in Chinese) (曾奇, 王猛, 张玉虎, 等. 原子核物理评论, 2017, 34(3):414.)
    [47] XING Y M, WANG M, ZHANG Y H, et al. Physica Scripta T, 2015, 166:014010.
    [48] ZHANG W, TU X L, WANG M, et al. Nucl Instr Meth A, 2014, 756:1.
    [49] AUDI G. International Journal of Mass Spectrometry, 2006, 251:85.
    [50] AUDI G, BLAUM K, BLOCK M, et al. At Data Nucl Data Tables, 2015, 103-104:1.
    [51] http://amdc.impcas.ac.cn
    [52] MOHR P J, TAYLOR B N, NEWELL D B Reviews of Modern Physics, 2008, 80:633.
    [53] NAGY S Z, FRITIOFF T, BJORKHAGE M, et al. Euro Phys Lett, 2006, 74(3):404.
    [54] WANG M, AUDI G, PFEIFFER B, et al. J Phys:Conf Ser, 2011, 312:092064.
    [55] MOHR P J, TAYLOR B N, NEWELL D B. Reviews of Modern Physics, 2012, 84:1527.
    [56] SUMIKAMA T, NISHIMURA S, BABA H, et al. Phys Rev C, 2017, 95:051601.
    [57] CELIKOVIC I, LEWITOWICZ M, GERNHAUSER R, et al. Phys Rev Lett, 2016, 116:162501.
    [58] YAMAGUCHI T. Physica Scripta T, 2015, 166:014039.
    [59] LI Cheng, ZHANG Fan, LI Jingjing, et al. Phys Rev C, 2016, 93:014618.
    [60] KIMURA S, ISHIYAMA H, MIYATAKE H, et al. Nucl Instr Meth B, 2016, 376:338.
  • 加载中
计量
  • 文章访问数:  2681
  • HTML全文浏览量:  205
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-08-30
  • 刊出日期:  2017-07-18

原子核质量的测量和评估

doi: 10.11804/NuclPhysRev.34.03.380
    基金项目:  国家重点研发计划资助项目(2016YFA0400504)
    作者简介:

    王猛(1977-),男,汉,河南淇县人,研究员,博士,从事实验核物理工作;E-mail:wangm@impcas.ac.cn

  • 中图分类号: O571.21

摘要: 质量是原子核的基本性质之一,在核物理和核天体物理中都有重要的应用。原子核质量测量是目前核物理研究的一个前沿热点课题,国际上各个核物理实验室积极发展新设备和新技术,在短寿命放射性核素测量和超高精度质量测量方面取得了重要进展,本文对此进行了总结评述。在兰州重离子加速器冷却储存环(HIRFL-CSR)上利用等时性质量谱仪测量了一些原子核的质量,本文对其在测量精度、核态最短寿命等前沿进展做了简要介绍,并介绍了正在发展的双飞行时间质量谱仪。原子质量评估收集所有与原子核质量相关的实验数据,经过评估后推荐出质量值及相应误差。原子质量评估AME2016于2017年3月发表,为科技工作者提供基准数据。


Mass is a fundamental property of the atomic nucleus. Nuclear mass data play an important role in nuclear physics and nuclear astrophysics. Thanks to the developments of novel mass spectrometers and radioactive nuclear beam facilities, the experimental knowledge of nuclear masses has been continuously expanding along two main directions, including:measurements aimed at high-precision mass values and at the most exotic nuclei far from the stability. The latest progress are reviewed in the paper. In the past few years, mass measurements of short-lived nuclides were performed using isochronous mass spectrometry based on the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR). The progresses on the frontiers of short half-life and high precision are introduced. The Atomic Mass Evaluation (AME) is the most reliable source for the comprehensive information related to the atomic (nuclear) masses. The latest version of the AME, i.e., AME2016, was published in March, 2017, serving the research community with the benchmark data.

English Abstract

王猛. 原子核质量的测量和评估[J]. 原子核物理评论, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
引用本文: 王猛. 原子核质量的测量和评估[J]. 原子核物理评论, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
WANG Meng. Nuclear Mass Measurement and Evaluation[J]. Nuclear Physics Review, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
Citation: WANG Meng. Nuclear Mass Measurement and Evaluation[J]. Nuclear Physics Review, 2017, 34(3): 380-386. doi: 10.11804/NuclPhysRev.34.03.380
参考文献 (60)

目录

    /

    返回文章
    返回