高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hartree-Fock基矢下第一性原理的多体微扰理论计算

胡柏山 许甫荣

胡柏山, 许甫荣. Hartree-Fock基矢下第一性原理的多体微扰理论计算[J]. 原子核物理评论, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
引用本文: 胡柏山, 许甫荣. Hartree-Fock基矢下第一性原理的多体微扰理论计算[J]. 原子核物理评论, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
HU Baishan, XU Furong. Ab initio Many-body Perturbation Calculations with Chiral N3LO Interaction[J]. Nuclear Physics Review, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
Citation: HU Baishan, XU Furong. Ab initio Many-body Perturbation Calculations with Chiral N3LO Interaction[J]. Nuclear Physics Review, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344

Hartree-Fock基矢下第一性原理的多体微扰理论计算

doi: 10.11804/NuclPhysRev.34.03.344
基金项目: 国家重大基础研究计划(973计划)(2013CB834402);国家自然科学基金资助项目(11235001,11320101004,11575007)
详细信息
    作者简介:

    胡柏山(1989-),男,甘肃肃南裕固族自治县人,在读博士,从事原子核与粒子物理研究;E-mail:hubsh@pku.edu.cn

    通讯作者: 许甫荣,E-mail:frxu@pku.edu.cn
  • 中图分类号: O571.2

Ab initio Many-body Perturbation Calculations with Chiral N3LO Interaction

Funds: National Basic Research Program of China (973 Program)(2013CB834402); National Natural Science Foundation of China (11235001, 11320101004, 11575007)
More Information
    Corresponding author: 10.11804/NuclPhysRev.34.03.344
  • 摘要: 从现实核力出发(手征有效场论N3LO),应用多体微扰理论对一些双幻核进行计算。借助相似重整化群理论对手征有效场论核力进行"软化"处理。在Hartree-Fock基矢下对有效哈密顿量进行多体微扰理论计算,对能量的修正计算到第三阶,对波函数微扰修正到第二阶。利用反对称化的Goldstone图对波函数进行展开,进而对单体密度进行修正,从单体密度出发对原子核半径进行计算。与实验数据进行对比,给出了很好的计算结果。


    Starting from chiral N3LO, we have applied many-body perturbation theory (MBPT) to the structure of spherical, doubly closed-shell nuclei. The two-body N3LO interaction is softened by a similarity renormalization group transformation. The MBPT calculations are performed within the Hartree-Fock (HF) bases. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Corrections up to the third order in energy and up to the second order in wave function are evaluated. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius. Our results are in very good agreement with experimental data.
  • [1] MACHLEIDT R. Phys Rev C, 2001, 63:024001.
    [2] STOKS V G J, KLOMP R A M, TERHEGGEN C P F, et al. Phys Rev C, 1994, 49:2950.
    [3] WIRINGA R B, STOKS V G J, SCHIAVILLA R. Phys Rev C, 1995, 51:38.
    [4] DOLESCHALL P. Phys Rev C, 2004, 69:054001.
    [5] ENTEM D R, MACHLEIDT R. Phys Rev C, 2003, 68:041001.
    [6] MACHLEIDT R, ENTEM D R. Physics Reports, 2011, 503(1):1.
    [7] BRUECKNER K A. Phys Rev, 1955, 97:1353.
    [8] GOLDSTONE J. Proc R Soc Lond A, 1957, 239:267.
    [9] BETHE H A, BRANDOW B H, PETSCHEK A G. Phys Rev, 1963, 129:225.
    [10] BOGNER S K, KUO T T S, CORAGGIO L, et al. Phys Rev C, 2002, 65:051301.
    [11] BOGNER S K, KUO T T S, SCHWENK A. Physics Reports, 2003, 386(1):1.
    [12] BOGNER S K, FURNSTAHL R J, PERRY R J. Phys Rev C, 2007, 75:061001.
    [13] ÔKUBO S. Progress of Theoretical Physics, 1954, 12(5):603.
    [14] SUZUKI K, LEE S Y. Progress of Theoretical Physics, 1980, 64(6):2091.
    [15] SUZUKI K. Progress of Theoretical Physics, 1982, 68(1):246.
    [16] SUZUKI K, OKAMOTO R. Progress of Theoretical Physics, 1983, 70(2):439.
    [17] SUZUKI K. Progress of Theoretical Physics, 1982, 68(6):1999.
    [18] SUZUKI K, OKAMOTO R. Progress of Theoretical Physics, 1994, 92(6):1045.
    [19] ROTH R, HERGERT H, PAPAKONSTANTINOU P, et al. Phys Rev C, 2005, 72:034002.
    [20] ROTH R, NEFF T, FELDMEIER H. Progress in Particle and Nuclear Physics, 2010, 65(1):50.
    [21] NAVRÁTIL P, VARY J P, BARRETT B R. Phys Rev C, 2000, 62:054311.
    [22] NAVRÁTIL P, VARY J P, BARRETT B R. Phys Rev Lett, 2000, 84:5728.
    [23] NAVRÁTIL P, QUAGLIONI S, STETCU I, et al. Journal of Physics G:Nuclear and Particle Physics, 2009, 36(8):083101.
    [24] CAPRIO M A, MARIS P, VARY J P. Physics Letters B, 2013, 719(1-3):179.
    [25] BARRETT B R, NAVRÁTIL P, VARY J P. Progress in Particle and Nuclear Physics, 2013, 69(0):131.
    [26] PIEPER S C, PANDHARIPANDE V R, WIRINGA R B, et al. Phys Rev C, 2001, 64:014001.
    [27] PIEPER S C, WIRINGA R B, CARLSON J. Phys Rev C, 2004, 70:054325.
    [28] PERVIN M, PIEPER S C, WIRINGA R B. Phys Rev C, 2007, 76:064319.
    [29] MARCUCCI L E, PERVIN M, PIEPER S C, et al. Phys Rev C, 2008, 78:065501.
    [30] HAGEN G, PAPENBROCK T, DEAN D J, et al. Phys Rev Lett, 2008, 101:092502.
    [31] HAGEN G, PAPENBROCK T, DEAN D J. Phys Rev Lett, 2009, 103:062503.
    [32] HAGEN G, PAPENBROCK T, DEAN D J, et al. Phys Rev C, 2010, 82:034330.
    [33] SHAVITT I, BARTLETT R J. Many-Body Methods in Chemistry and Physics:MBPT and Coupled-Cluster Theory[M]. Cambridge University Press, 2009.
    [34] CORAGGIO L, ITACO N, COVELLO A, et al. Phys Rev C, 2003, 68:034320.
    [35] HASAN M A, VARY J P, NAVRÁTIL P. Phys Rev C, 2004, 69:034332.
    [36] ROTH R, PAPAKONSTANTINOU P, PAAR N, et al. Phys Rev C, 2006, 73:044312.
    [37] BRILLOUIN L. J Phys Radium, Ser, 1932, 3:373.
    [38] WIGNER E. Math Naturwiss Anz Ungar Akad Wiss, 1935, 53:477.
    [39] STRUTT J W, RAYLEIGH B. The Theory of Sound, Vol1[M]. 2ed. New York:Macmillan and Company, 1894.
    [40] SCHRÖDINGER E. Ann Physik, 1926, 385:437.
    [41] HU B S, XU F R, SUN Z H, et al. Phys Rev C, 2016, 94:014303.
    [42] NEGELE J W. Phys Rev C, 1970, 1:1260.
    [43] ANGELI I, MARINOVA K. Atomic Data and Nuclear Data Tables, 2013, 99(1):69.
    [44] AUDI G, KONDEV F, WANG M, et al. Chinese Physics C, 2012, 36(12):1157.
    [45] BOGNER S K, FURNSTAHL R J, MARIS P, et al. Nuclear Physics A, 2008, 801(1-2):21.
    [46] JURGENSON E D, MARIS P, FURNSTAHL R J, et al. Phys Rev C, 2013, 87:054312.
    [47] TICHAI A, LANGHAMMER J, BINDER S, et al. arXiv:1601.03703[nucl-th].
    [48] EKSTRÖM A, JANSEN G R, WENDT K A, et al. Phys Rev C, 2015, 91:051301.
  • 加载中
计量
  • 文章访问数:  1567
  • HTML全文浏览量:  211
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-04-11
  • 刊出日期:  2017-07-18

Hartree-Fock基矢下第一性原理的多体微扰理论计算

doi: 10.11804/NuclPhysRev.34.03.344
    基金项目:  国家重大基础研究计划(973计划)(2013CB834402);国家自然科学基金资助项目(11235001,11320101004,11575007)
    作者简介:

    胡柏山(1989-),男,甘肃肃南裕固族自治县人,在读博士,从事原子核与粒子物理研究;E-mail:hubsh@pku.edu.cn

    通讯作者: 许甫荣,E-mail:frxu@pku.edu.cn
  • 中图分类号: O571.2

摘要: 从现实核力出发(手征有效场论N3LO),应用多体微扰理论对一些双幻核进行计算。借助相似重整化群理论对手征有效场论核力进行"软化"处理。在Hartree-Fock基矢下对有效哈密顿量进行多体微扰理论计算,对能量的修正计算到第三阶,对波函数微扰修正到第二阶。利用反对称化的Goldstone图对波函数进行展开,进而对单体密度进行修正,从单体密度出发对原子核半径进行计算。与实验数据进行对比,给出了很好的计算结果。


Starting from chiral N3LO, we have applied many-body perturbation theory (MBPT) to the structure of spherical, doubly closed-shell nuclei. The two-body N3LO interaction is softened by a similarity renormalization group transformation. The MBPT calculations are performed within the Hartree-Fock (HF) bases. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Corrections up to the third order in energy and up to the second order in wave function are evaluated. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius. Our results are in very good agreement with experimental data.

English Abstract

胡柏山, 许甫荣. Hartree-Fock基矢下第一性原理的多体微扰理论计算[J]. 原子核物理评论, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
引用本文: 胡柏山, 许甫荣. Hartree-Fock基矢下第一性原理的多体微扰理论计算[J]. 原子核物理评论, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
HU Baishan, XU Furong. Ab initio Many-body Perturbation Calculations with Chiral N3LO Interaction[J]. Nuclear Physics Review, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
Citation: HU Baishan, XU Furong. Ab initio Many-body Perturbation Calculations with Chiral N3LO Interaction[J]. Nuclear Physics Review, 2017, 34(3): 344-350. doi: 10.11804/NuclPhysRev.34.03.344
参考文献 (48)

目录

    /

    返回文章
    返回