高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对关联在反磁转动中的作用(英文)

张振华

张振华. 对关联在反磁转动中的作用(英文)[J]. 原子核物理评论, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
引用本文: 张振华. 对关联在反磁转动中的作用(英文)[J]. 原子核物理评论, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
ZHANG Zhenhua. Effects of Pairing Correlations on the Antimagnetic Rotation[J]. Nuclear Physics Review, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
Citation: ZHANG Zhenhua. Effects of Pairing Correlations on the Antimagnetic Rotation[J]. Nuclear Physics Review, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116

对关联在反磁转动中的作用(英文)

doi: 10.11804/NuclPhysRev.34.01.116
基金项目: 国家自然科学基金资助项目(11275098,11275248,11505058);中央高校基本科研业务费专项资金(2015QN21)
详细信息
  • 中图分类号: O571.6

Effects of Pairing Correlations on the Antimagnetic Rotation

Funds: National Natural Science Foundation of China(11275098, 11275248, 11505058); Fundamental Research Funds for Central Universities(2015QN21)
  • 摘要: 采用基于推转壳模型的粒子数守恒方法对105Cd 和106Cd 中的反磁转动带进行了研究,在计算当中,粒子数严格守恒,并且堵塞效应也是严格考虑的。计算结果很好地再现了实验上观测到的I-Ω 关系、转动惯量以及约化跃迁几率B(E2)。通过检验双剪角,即两个质子空穴角动量的合拢,对反磁转动中的双剪刀机制进行了分析。研究表明剪刀角的合拢非常敏感地依赖于对关联。


    The antimagnetic rotation bands in 105;106Cd are investigated by the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia, I-Ω relation and the reduced B(E2) transition probabilities are well reproduced. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta. The sensitive dependence of the shears angle on the nuclear pairing correlations is revealed.
  • [1] FRAUENDORF S, MENG J, REIF J, et al. Proceedings of the Conference on Physics From Large -Ray Detector Arrays, volume Ⅱ of Report LBL35687. Univ of California, Berkeley, 1994: 52.
    [2] FRAUENDORF S. In DELEPLANQUE M A, LEE I Y, et al. Proceedings of the Workshop on Gammasphere Physics, Berkeley[M]. Singapore: World Scientific, 1996: 272.
    [3] FRAUENDORF S. Rev Mod Phys, 2001, 73: 463.
    [4] CLARK R M, MACCHIAVELLI A O. Annu Rev Nucl Part Sci, 2000, 50: 1.
    [5] HÜBEL H. Prog Part Nucl Phys, 2005, 54: 1.
    [6] MENG J, PENG J, ZHANG S Q, et al. Frontiers Phys, 2013, 8: 55.
    [7] CHOUDHURY D, JAIN A K, PATIAL M, et al. Phys Rev C, 2010, 82: 061308R.
    [8] SIMONS A J,WADSWORTH R, JENKINS D G, et al. Phys Rev Lett, 2003, 91: 162501.
    [9] SIMONS A J,WADSWORTH R, JENKINS D G, et al. Phys Rev C, 2005, 72: 024318.
    [10] DATTA P, CHATTOPADHYAY S, BHATTACHARYA S, et al. Phys Rev C, 2005, 71: 041305.
    [11] ROY S, CHATTOPADHYAY S, DATTA P, et al. Phys Lett B, 2011, 694: 322.
    [12] CHOUDHURY D, JAIN A K, KUMAR G A, et al. Phys Rev C, 2013, 87: 034304.
    [13] SUGAWARA M, HAYAKAWA T, OSHIMA M, et al. Phys Rev C, 2012, 86: 034326.
    [14] SUGAWARA M, HAYAKAWA T, OSHIMA M, et al. Phys Rev C, 2015, 92: 024309.
    [15] CHIARA C J, ASZTALOS S J, BUSSE B, et al. Phys Rev C, 2000, 61: 034318.
    [16] ZHU S, GARG U, AFANASJEV A V, et al. Phys Rev C, 2001, 64: 041302R.
    [17] SUGAWARA M, TOH Y, OSHIMA M, et al. Phys Rev C, 2009, 79: 064321.
    [18] LI X W, LI J, LU J B, et al. Phys Rev C, 2012, 86: 057305.
    [19] FRAUENDORF S. Nucl Phys A, 2000, 677: 115.
    [20] PENG J, MENG J, RING P, et al. Phys Rev C, 2008, 78: 024313
    [21] ZHAO P W, ZHANG S Q, PENG J, et al. Phys Lett B, 2011, 699: 181.
    [22] ZHAO P W, ZHANG S Q, MENG J. Phys Rev C, 2015, 92: 034319.
    [23] ZHAO P W, PENG J, LIANG H Z, et al. Phys Rev Lett, 2011, 107: 122501.
    [24] ZHAO P W, PENG J, LIANG H Z, et al. Phys Rev C, 2012, 85: 054310.
    [25] LIU L, ZHAO P. Sci Sin-Phys Mech Astron, 2012, 55: 2420.
    [26] PENG J, ZHAO P W. Phys Rev C, 2015, 91: 044329
    [27] ZENG J Y, CHENG T S. Nucl Phys A, 1983, 405: 1.
    [28] ZENG J Y, JIN T H, ZHAO Z J. Phys Rev C, 1994, 50: 1388.
    [29] WU C S, ZENG J Y. Phys Rev C, 1989, 39: 666.
    [30] MENG J, GUO J Y, LIU L, et al. Frontiers Phys China, 2006, 1: 38.
    [31] PILLET N, QUENTIN P, LIBERT J. Nucl Phys A, 2002, 697: 141.
    [32] FU X M, XU F R, PEI J C, et al. Phys Rev C, 2013, 87: 044319.
    [33] FU X, JIAO C, XU F, et al. Sci China-Phys Mech Astron, 2013, 56: 1423.
    [34] LIANG W Y, JIAO C F, WU Q, et al. Phys Rev C, 2015, 92: 064325.
    [35] ZENG J Y, LEI Y A, JIN T H, et al. Phys Rev C, 1994, 50: 746.
    [36] LIU S X, ZENG J Y, ZHAO E G. Phys Rev C, 2002, 66: 024320.
    [37] HE X T, LIU S X, YU S Y, et al. Eur Phys J A, 2005, 23: 217.
    [38] LIU S X, ZENG J Y. Phys Rev C, 2002, 66: 067301.
    [39] HE X, YU S, ZENG J, et al. Nucl Phys A, 2005, 760: 263.
    [40] ZHANG Z H, WU X, LEI Y A, et al. Chin Phys C, 2008, 32: 681.
    [41] WU X, ZHANG Z H, ZENG J Y, et al. Phys Rev C, 2011, 83: 034323.
    [42] LIU S X, ZENG J Y, YU L. Nucl Phys A, 2004, 735: 77.
    [43] ZHANG Z H, WU X, LEI Y A, et al. Nucl Phys A, 2009, 816: 19.
    [44] ZHANG Z H, LEI Y A, ZENG J Y. Phys Rev C, 2009, 80: 034313.
    [45] ZHANG Z H, QI S T, SUN B X, et al. Chin Phys C, 2010, 34: 39.
    [46] ZHANG Z H, XU H Q, SUN B X. Chin Phys C, 2010, 34: 1836.
    [47] LI B H, ZHANG Z H, LEI Y A. Chin Phys C, 2013, 37: 014101.
    [48] ZHANG Z H. Nucl Phys A, 2016, 949: 22.
    [49] ZHANG Z H. Sci China-Phys Mech Astron, 2016, 59: 672012.
    [50] HE X T, REN Z Z, LIU S X, et al. Nucl Phys A, 2009, 817: 45.
    [51] ZHANG Z H, ZENG J Y, ZHAO E G, et al. Phys Rev C, 2011, 83: 011304R.
    [52] ZHANG Z H, HE X T, ZENG J Y, et al. Phys Rev C, 2012, 85: 014324.
    [53] ZHANG Z H, MENG J, ZHAO E G, et al. Phys Rev C, 2013, 87: 054308.
    [54] LI Y C, HE X T. Sci China-Phys Mech Astron, 2016, 59: 672011.
    [55] ZHANG Z H, ZHAO P W, MENG J, et al. Phys Rev C, 2013, 87: 054314.
    [56] FRAUENDORF S, MENG J. Z Phys A, 1996, 356: 263.
  • 加载中
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  139
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 刊出日期:  2017-03-20

对关联在反磁转动中的作用(英文)

doi: 10.11804/NuclPhysRev.34.01.116
    基金项目:  国家自然科学基金资助项目(11275098,11275248,11505058);中央高校基本科研业务费专项资金(2015QN21)
  • 中图分类号: O571.6

摘要: 采用基于推转壳模型的粒子数守恒方法对105Cd 和106Cd 中的反磁转动带进行了研究,在计算当中,粒子数严格守恒,并且堵塞效应也是严格考虑的。计算结果很好地再现了实验上观测到的I-Ω 关系、转动惯量以及约化跃迁几率B(E2)。通过检验双剪角,即两个质子空穴角动量的合拢,对反磁转动中的双剪刀机制进行了分析。研究表明剪刀角的合拢非常敏感地依赖于对关联。


The antimagnetic rotation bands in 105;106Cd are investigated by the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia, I-Ω relation and the reduced B(E2) transition probabilities are well reproduced. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta. The sensitive dependence of the shears angle on the nuclear pairing correlations is revealed.

English Abstract

张振华. 对关联在反磁转动中的作用(英文)[J]. 原子核物理评论, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
引用本文: 张振华. 对关联在反磁转动中的作用(英文)[J]. 原子核物理评论, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
ZHANG Zhenhua. Effects of Pairing Correlations on the Antimagnetic Rotation[J]. Nuclear Physics Review, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
Citation: ZHANG Zhenhua. Effects of Pairing Correlations on the Antimagnetic Rotation[J]. Nuclear Physics Review, 2017, 34(1): 116-120. doi: 10.11804/NuclPhysRev.34.01.116
参考文献 (56)

目录

    /

    返回文章
    返回