高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准幻核中的近似广义辛弱数守恒(英文)

Ashok Kumar Jain Bhoomika Maheshwari

Ashok Kumar Jain, Bhoomika Maheshwari. 准幻核中的近似广义辛弱数守恒(英文)[J]. 原子核物理评论, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
引用本文: Ashok Kumar Jain, Bhoomika Maheshwari. 准幻核中的近似广义辛弱数守恒(英文)[J]. 原子核物理评论, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
Ashok Kumar Jain, Bhoomika Maheshwari. Goodness of Generalized Seniority in Semi-magic Nuclei[J]. Nuclear Physics Review, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
Citation: Ashok Kumar Jain, Bhoomika Maheshwari. Goodness of Generalized Seniority in Semi-magic Nuclei[J]. Nuclear Physics Review, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073

准幻核中的近似广义辛弱数守恒(英文)

doi: 10.11804/NuclPhysRev.34.01.073
基金项目: 印度政府人力资源部资助项目
详细信息
    作者简介:

    Ashok Kumar Jain, male (Indian), Varanasi, India, Professor, working on nuclear structure physics; E-mail: ajainfph@iitr.ac.in.

  • 中图分类号: O571.6

Goodness of Generalized Seniority in Semi-magic Nuclei

Funds: Program of Ministry of Human Resource and Development, Govt. of India
  • 摘要: 对称性在了解诸如原子核的转动、自旋和宇称、及同位旋等核结构性质中都起着重要的作用,并且使复杂的原子核结构问题得以简化。辛弱数就是由于原子核的对相互作用中的对称性所导出的众所周知的好量子数。通过对丰中子和缺中子核素及核素的高自旋态的衰变数据分析来揭示辛弱数的近似守恒性质。研究结果表明,在准幻核的高自旋同质异能素链中,无论所涉及的价空间的核子轨道有何不同,广义辛弱数总是近似的好量子数。


    Symmetry plays an important role in understanding the nuclear structure properties from the rotation of a nucleus to the spin, parity and isospin of nuclear states. This simplifies the complexity of the nuclear problems in one way or the other. Seniority is also a well known quantum number which arises due to the symmetry in the pairing interaction of nuclei. We present empirical as well as theoretical evidences based on decay rates which support the goodness of seniority at higher spins as well as in nrich or, n-deficient nuclei. We find that the generalized seniority governs the identical trends of high-spin isomers in different semi-magic chains, where different set of nucleon orbitals from different valence spaces are involved.
  • [1] RACAH G. Phys Rev, 1943, 63: 367.
    [2] RACAH G, TALMI I. Physica, 1952, 18: 1097.
    [3] FLOWERS B H. Proc Roy Soc (London) A, 1952, 212: 248.
    [4] ARIMA A, ICHIMURA M. Prog of Theo Phys, 1966, 36: 296.
    [5] TALMI I. Nucl Phys A, 1971, 172: 1.
    [6] JAIN A K, MAHESHWARI B, GARG S, et al. Nucl Data Sheets, 2015, 128: 1.
    [7] MAHESHWARI B, JAIN A K Phys Lett B, 2016, 753: 122.
    [8] MAHESHWARI B, JAIN A K, SINGH B. Nucl Phys A, 2016, 952: 62.
    [9] DALY P J, KLENHEINZ P, BRODA R, et al. Z Phys A, 1980, 298: 173.
    [10] FOGELBERG B, HEYDE K, SAU J Nucl Phys A, 1981, 352: 157.
    [11] DALY P J, LUNARDI S, SORAMEL F, et al. Z Phys A, 1986, 323: 245.
    [12] LUNARDI S, DALY P J, SORAMEI F, et al. Z Phys A, 1987, 328: 487.
    [13] BRODA R, MAYER R H, BEARDEN I G, et al. Phys Rev Lett, 1992, 68: 1671.
    [14] MAYER R, NISIUS D T, BEARDEN I G, et al. Phys Lett B, 1994, 336: 308.
    [15] DALY P J, MAYER R H, NISIUS D, et al. Phys Scr T, 1995, 56: 94.
    [16] PINSTON J A, FOIN C, GENEVEY J, et al. Phys Rev C, 2000, 61: 024312.
    [17] ZHANG C T, BHATTACHARYYA P, DALY P J, et al. Phys Rev C, 2000, 62: 057305.
    [18] LOZEVA R L, SIMPSON G S, GRAWE H, et al. Phys Rev C, 2008, 77: 064313.
    [19] PIETRI S, JUNCLAUS A, GORSKA M, et al. Phys Rev C, 2011, 83: 044328.
    [20] ASTIER A. Journal of Physics: Conf Series, 2013, 420: 012055.
    [21] ASTIER A, PORQUET M G, THEISEN CH, et al. Phys Rev C, 2012, 85: 054316.
    [22] ISKRA Ł W, BRODA R, JANSSENS R V F, et al. Phys Rev C, 2014, 89: 044324.
    [23] BRON J, HESSELINK W H A, POELQEEST A V, et al. Nucl Phys A, 1979, 318: 335.
    [24] POELQEEST A V, BRON J, HESSELINK W H A, et al. Nucl Phys A, 1980, 346: 70.
    [25] HARADA H, MURAKAMI T, YOSHIDA K, et al. Phys Lett B, 1988, 207: 17.
    [26] SAVELIUS A, JUUTINEN S, HELARIUTTA K, et al. Nucl Phys A, 1998, 637: 491.
    [27] GABLESKE J, DEWALD A, TIESLER H, et al. Nucl Phys A, 2001, 691: 551.
    [28] WOLINSKA-CICHOCKA M, KOWNACKI J, URBAN W, et al. Eur Phys J A, 2005, 24: 259.
    [29] WANG S Y, SUN D P, DUAN B T et al. Phys Rev C, 2010, 81: 017301.
    [30] FOTIADES N, DEVLIN M, NELSON R O, et al. Phys Rev C, 2011, 84: 054310.
    [31] SIMPSON G S, GEY G, JUNGCLAUS A, et al. Phys Rev Lett, 2014, 113: 132502.
    [32] MAHESHWARI B, JAIN A K, SRIVASTAVA P C. Phys Rev C, 2015, 91: 024321.
    [33] MCNEILL J H, BLOMQVIST J, CHISHTI A A, et al. Phys Rev Lett, 1989, 63: 860.
    [34] ASTIER A, PORQUET M G, VENKOVA T S, et al. Phys Rev C, 2012, 85: 064316.
    [35] TALMI I. Simple Models of Complex Nuclei-The Shell Model and Interacting Boson Model[M]. Switzerland Chur: Harwood Academic Publisher, 1993.
    [36] LAWSON R D. Theory of the Nuclear Shell Model[M]. New York: Oxford University Press, 1980.
    [37] TALMI I. Adv Nucl Phys, 2003, 27: 1.
    [38] ENSDF: http://www.nndc.bnl.gov/ensdf/.
    [39] XUNDL: http://www.nndc.bnl.gov/ensdf/ensdf/xundl.jsp.
    [40] ASTIER A. EPJ Web of Conf, 2013, 62: 01008.
    [41] ISKRA Ł W, BRODA R, JANSSENS R V F, et al. Phys Rev C, 2016, 93: 014303.
    [42] MAHESHWARI B, Ph.D. Thesis, ⅡT Roorkee 2016, unpublished.
  • 加载中
计量
  • 文章访问数:  1519
  • HTML全文浏览量:  207
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-03-20

准幻核中的近似广义辛弱数守恒(英文)

doi: 10.11804/NuclPhysRev.34.01.073
    基金项目:  印度政府人力资源部资助项目
    作者简介:

    Ashok Kumar Jain, male (Indian), Varanasi, India, Professor, working on nuclear structure physics; E-mail: ajainfph@iitr.ac.in.

  • 中图分类号: O571.6

摘要: 对称性在了解诸如原子核的转动、自旋和宇称、及同位旋等核结构性质中都起着重要的作用,并且使复杂的原子核结构问题得以简化。辛弱数就是由于原子核的对相互作用中的对称性所导出的众所周知的好量子数。通过对丰中子和缺中子核素及核素的高自旋态的衰变数据分析来揭示辛弱数的近似守恒性质。研究结果表明,在准幻核的高自旋同质异能素链中,无论所涉及的价空间的核子轨道有何不同,广义辛弱数总是近似的好量子数。


Symmetry plays an important role in understanding the nuclear structure properties from the rotation of a nucleus to the spin, parity and isospin of nuclear states. This simplifies the complexity of the nuclear problems in one way or the other. Seniority is also a well known quantum number which arises due to the symmetry in the pairing interaction of nuclei. We present empirical as well as theoretical evidences based on decay rates which support the goodness of seniority at higher spins as well as in nrich or, n-deficient nuclei. We find that the generalized seniority governs the identical trends of high-spin isomers in different semi-magic chains, where different set of nucleon orbitals from different valence spaces are involved.

English Abstract

Ashok Kumar Jain, Bhoomika Maheshwari. 准幻核中的近似广义辛弱数守恒(英文)[J]. 原子核物理评论, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
引用本文: Ashok Kumar Jain, Bhoomika Maheshwari. 准幻核中的近似广义辛弱数守恒(英文)[J]. 原子核物理评论, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
Ashok Kumar Jain, Bhoomika Maheshwari. Goodness of Generalized Seniority in Semi-magic Nuclei[J]. Nuclear Physics Review, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
Citation: Ashok Kumar Jain, Bhoomika Maheshwari. Goodness of Generalized Seniority in Semi-magic Nuclei[J]. Nuclear Physics Review, 2017, 34(1): 73-81. doi: 10.11804/NuclPhysRev.34.01.073
参考文献 (42)

目录

    /

    返回文章
    返回