高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不带奇异数的双重子态(英文)

戴连荣 苏杭 李冰 邵思佳 孙悦玲

戴连荣, 苏杭, 李冰, 邵思佳, 孙悦玲. 不带奇异数的双重子态(英文)[J]. 原子核物理评论, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
引用本文: 戴连荣, 苏杭, 李冰, 邵思佳, 孙悦玲. 不带奇异数的双重子态(英文)[J]. 原子核物理评论, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
DAI Lianrong, SU Hang, LI Bing, SHAO Sijia, SUN Yueling. Dibaryons without Strangeness[J]. Nuclear Physics Review, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
Citation: DAI Lianrong, SU Hang, LI Bing, SHAO Sijia, SUN Yueling. Dibaryons without Strangeness[J]. Nuclear Physics Review, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035

不带奇异数的双重子态(英文)

doi: 10.11804/NuclPhysRev.34.01.035
基金项目: 国家自然科学基金资助项目(11575076,11375080);辽宁省高等学校优秀科技人才支持计划项目(LR2015032)
详细信息
  • 中图分类号: O571.6

Dibaryons without Strangeness

Funds: National Natural Science Foundation of China (11575076, 11375080); Program for Liaoning Excellent Talents in University(LR2015032)
  • 摘要: 在手征SU(3) 夸克模型下应用共振群方法讨论了三个非奇异的双重子态的性质。计算中的模型参数取自我们以前的工作,拟合核子-核子相互作用散射相移确定下来的。首先,研究了氘核的性质,这是非常重要的,因为氘核是多年来实验上唯一发现的双重子态。氘核属于核子-核子系统,它是自旋为S =1 和同位旋为T =0 的双重子态。我们计算了氘核的结合能、散射长度以及氘核的相对运动波函数,结果表明手征SU(3) 夸克模型可以合理描述氘核的性质并且发现张量力对形成松散束缚态的氘核是重要的。然后,给出了S = 3 和T =0 的ΔΔ双重子态的理论预言结果,这里考虑了分波耦合和隐色道耦合效应,计算了结合能和均方根半径。结果表明,隐色道耦合效应比分波耦合效应大,也就是说隐色道耦合效应在形成(ΔΔ)ST=30 双重子态中是重要的。我们的理论预言结果在几十个MeV 左右,低于ΔΔ道的阈值但是高于NΔπ的阈值. 出乎意料地,我们的预言结果很接近最近2014 年WASA的实验结果。接着,给出了对S = 0 和T =3 的ΔΔ双重子态性质的最新研究结果,这里在以前的单道计算基础上考虑了隐色道耦合效应。结果表明,隐色道耦合对(ΔΔ)ST=03的结合能也有较大的影响。但是,和(ΔΔ)ST=30 一样,它的质量低于ΔΔ道的阈值但是高于NΔπ的阈值。最后,对S = 3 以及S = 0 两个不同ΔΔ自旋态,详细比较了两者结构之间的差异。结果表明,σ'介子交换和OGE 交换对自旋S = 0 和S = 1 态提供的吸引作用分别是主要的,从而导致耦合道计算中系统的结合能变大。


    In the present work we discuss three dibaryons without strangeness in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. In the calculation, the model parameters are taken from our previous work in which the nucleon-nucleon (NN) scattering phase shifts are fitted quite well. Firstly, the structure of deuteron is discussed, which is very important since it is the first dibaryon confirmed by experiment in the past many years. Deuteron belongs to NN system with spin S =1 and isospin T =0, the binding energy, scattering length and the relative wave functions of deuteron are discussed. The results show that the chiral SU(3) quark model describes the properties of deuteron quite well and tensor interaction is important in forming the deuteron loosely bound. Secondly, the predicted results of ΔΔ dibaryon with S =3 and T =0 are shown, the resultant binding energy and size of root-mean-square (RMS) of six quarks are calculated by including the L coupling and hidden color channel (CC) coupling. The results show that the CC coupling effect is much larger than the L mixing effect, which means that CC coupling plays an important role in forming the spin S =3 ΔΔ dibayon state. Our predicted binding energy is several tens MeV, it is lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. Unexpectedly, our predicted mass is quite close to the recent confirmation by WASA experiments in 2014. Thirdly, we present our new results of ΔΔ dibaryon with S = 0 and T =3, obtained recently by extending the single-channel calculation to including the CC coupling. It is seen that the CC coupling also has a relatively large effect on (ΔΔ)ST=03 state. However, its mass is still lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ, similar as that of (ΔΔ)ST=30 state. Finally, we further make some comparisons between S = 3 and S = 0 ΔΔ states to show the difference of the two dibaryons. The results show that the attractive interactions from σ' meson and OGE exchanges are dominantly important for S =0 and S =3 states, respectively, so their binding energies all become larger in coupled-channel calculation.
  • [1] BASHKANOV M, BARGHOLTZ C, BERIOWSKI M, et al. Phys Rev Lett, 2009, 102: 052301.
    [2] ADLARSON P, ADOLPH C. Phys Rev Lett, 2011, 106: 242302.
    [3] ADLARSON P,AUGUSTYNIAK W, BARDAN W, et al. Phys Rev Lett, 2014, 112: 202301.
    [4] ADLARSON P, AUGUSTYNIAK W, BARDAN W, et al. Phys Rev C, 2014, 90: 035204.
    [5] ADLARSON P, AUGUSTYNIAK W, BARDAN W, et al. arXiv: 1606.02964 [nucl-ex]
    [6] DYSON F J, XUONG N H. Phys Rev Lett, 1964, 13: 815.
    [7] GARCILAZO H, FERNANDEZ F, VALCARCE A, et al. Phys Rev C, 1997, 56: 84.
    [8] VALCARCE A, GARCILAZO H, MOTA R D, et al. J Phys G, 2001, 27: L1.
    [9] LI Q B, SHEN P N. J Phys G, 2000, 26: 1207.
    [10] GAL A, GARCILAZO H. Nucl Phys A, 2014, 928: 73.
    [11] ZHANG Z Y, YU Y W, SHEN P N, et al. Nucl Phys A, 1997, 625: 59.
    [12] YUAN X Q, ZHANG Z Y, YU Y W, et al. Phys Rev C, 1999, 60: 045203.
    [13] LI Q B, SHEN P N. J Phy G, 2000, 26: 1207.
    [14] LI Q B, SHEN P N, ZHANG Z Y, et al. Nucl Phys A, 2001, 683: 487.
    [15] DAI L R, ZHANG Y N, SUN Y L, et al. Eur Phys J A, 2016, 52: 295.
    [16] DAI L R, ZHANG Z Y, YU Y W, et al. Nucl Phys A, 2003, 727: 321.
    [17] KUSAINOV A M, NEUDATCHIN V G, OBUKHOVSKY I T, et al. Phys Rev C, 1991, 44: 2343.
    [18] BUCHMANN A, HERNÁNDEZ E, YAZAKI K, et al. Phys Lett B, 1991, 269: 35.
    [19] HENLEY E M, MILLE G A. Phys Lett B, 1991, 251: 453.
    [20] KAMIMURA M. Suppl Prog Theor Phys, 1977, 62: 236.
    [21] DAI L R. Chin Phys Lett, 2005, 22: 2204.
    [22] DAI L R. Chin Phys Lett, 2010, 27: 061301.
    [23] DAI L R. Chin Phys Lett, 2014, 31: 011401.
    [24] DUMBRAJS O, KOCH R, PILKUHN H, et al. Nucl PhysB, 1983, 216: 277.
  • 加载中
计量
  • 文章访问数:  400
  • HTML全文浏览量:  113
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 刊出日期:  2017-03-20

不带奇异数的双重子态(英文)

doi: 10.11804/NuclPhysRev.34.01.035
    基金项目:  国家自然科学基金资助项目(11575076,11375080);辽宁省高等学校优秀科技人才支持计划项目(LR2015032)
  • 中图分类号: O571.6

摘要: 在手征SU(3) 夸克模型下应用共振群方法讨论了三个非奇异的双重子态的性质。计算中的模型参数取自我们以前的工作,拟合核子-核子相互作用散射相移确定下来的。首先,研究了氘核的性质,这是非常重要的,因为氘核是多年来实验上唯一发现的双重子态。氘核属于核子-核子系统,它是自旋为S =1 和同位旋为T =0 的双重子态。我们计算了氘核的结合能、散射长度以及氘核的相对运动波函数,结果表明手征SU(3) 夸克模型可以合理描述氘核的性质并且发现张量力对形成松散束缚态的氘核是重要的。然后,给出了S = 3 和T =0 的ΔΔ双重子态的理论预言结果,这里考虑了分波耦合和隐色道耦合效应,计算了结合能和均方根半径。结果表明,隐色道耦合效应比分波耦合效应大,也就是说隐色道耦合效应在形成(ΔΔ)ST=30 双重子态中是重要的。我们的理论预言结果在几十个MeV 左右,低于ΔΔ道的阈值但是高于NΔπ的阈值. 出乎意料地,我们的预言结果很接近最近2014 年WASA的实验结果。接着,给出了对S = 0 和T =3 的ΔΔ双重子态性质的最新研究结果,这里在以前的单道计算基础上考虑了隐色道耦合效应。结果表明,隐色道耦合对(ΔΔ)ST=03的结合能也有较大的影响。但是,和(ΔΔ)ST=30 一样,它的质量低于ΔΔ道的阈值但是高于NΔπ的阈值。最后,对S = 3 以及S = 0 两个不同ΔΔ自旋态,详细比较了两者结构之间的差异。结果表明,σ'介子交换和OGE 交换对自旋S = 0 和S = 1 态提供的吸引作用分别是主要的,从而导致耦合道计算中系统的结合能变大。


In the present work we discuss three dibaryons without strangeness in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. In the calculation, the model parameters are taken from our previous work in which the nucleon-nucleon (NN) scattering phase shifts are fitted quite well. Firstly, the structure of deuteron is discussed, which is very important since it is the first dibaryon confirmed by experiment in the past many years. Deuteron belongs to NN system with spin S =1 and isospin T =0, the binding energy, scattering length and the relative wave functions of deuteron are discussed. The results show that the chiral SU(3) quark model describes the properties of deuteron quite well and tensor interaction is important in forming the deuteron loosely bound. Secondly, the predicted results of ΔΔ dibaryon with S =3 and T =0 are shown, the resultant binding energy and size of root-mean-square (RMS) of six quarks are calculated by including the L coupling and hidden color channel (CC) coupling. The results show that the CC coupling effect is much larger than the L mixing effect, which means that CC coupling plays an important role in forming the spin S =3 ΔΔ dibayon state. Our predicted binding energy is several tens MeV, it is lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. Unexpectedly, our predicted mass is quite close to the recent confirmation by WASA experiments in 2014. Thirdly, we present our new results of ΔΔ dibaryon with S = 0 and T =3, obtained recently by extending the single-channel calculation to including the CC coupling. It is seen that the CC coupling also has a relatively large effect on (ΔΔ)ST=03 state. However, its mass is still lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ, similar as that of (ΔΔ)ST=30 state. Finally, we further make some comparisons between S = 3 and S = 0 ΔΔ states to show the difference of the two dibaryons. The results show that the attractive interactions from σ' meson and OGE exchanges are dominantly important for S =0 and S =3 states, respectively, so their binding energies all become larger in coupled-channel calculation.

English Abstract

戴连荣, 苏杭, 李冰, 邵思佳, 孙悦玲. 不带奇异数的双重子态(英文)[J]. 原子核物理评论, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
引用本文: 戴连荣, 苏杭, 李冰, 邵思佳, 孙悦玲. 不带奇异数的双重子态(英文)[J]. 原子核物理评论, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
DAI Lianrong, SU Hang, LI Bing, SHAO Sijia, SUN Yueling. Dibaryons without Strangeness[J]. Nuclear Physics Review, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
Citation: DAI Lianrong, SU Hang, LI Bing, SHAO Sijia, SUN Yueling. Dibaryons without Strangeness[J]. Nuclear Physics Review, 2017, 34(1): 35-40. doi: 10.11804/NuclPhysRev.34.01.035
参考文献 (24)

目录

    /

    返回文章
    返回