高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

暗物质理论研究进展

李希国

李希国. 暗物质理论研究进展[J]. 原子核物理评论, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
引用本文: 李希国. 暗物质理论研究进展[J]. 原子核物理评论, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
LEE Xiguo. Progress of Theoretical Study on Dark Matter[J]. Nuclear Physics Review, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
Citation: LEE Xiguo. Progress of Theoretical Study on Dark Matter[J]. Nuclear Physics Review, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392

暗物质理论研究进展

doi: 10.11804/NuclPhysRev.33.04.392
基金项目: 国家自然科学基金资助项目(11575254)
详细信息
    作者简介:

    李希国(1961-),男,甘肃庆阳人,博士,从事理论物理与暗物质暗能量研究;E-mail:xgl@impcas.ac.cn

  • 中图分类号: O572.3

Progress of Theoretical Study on Dark Matter

Funds: National Natural Science Foundation of China(11205221)
  • 摘要: 评述了天体物理中暗物质的发现以及标准模型所面临的问题,综述了解决这些问题及标准模型之外可能出现的新物理与暗物质的联系。介绍了暗物质粒子选择条件和可能的暗物质粒子的候选者;对圆柱形暗物质表面密度与星系和星系团暗物质晕的晕核半径的关系进行了讨论,与其他模型进行了比较,得出暗物质晕的特征半径r*的暗物质表面密度分布不是一个普适量;并叙述了近几年暗物质研究中提出的新理论模型-Hidden dark matter,最后叙述了中国暗物质实验探测研究的进展,2016年底DAMPE的第一批数据有可能给出;中国锦屏地下实验室(CJPL)的CDEX和PandaX合作组的第一期实验没有发现暗物质粒子存在的信号,期待他们下期的实验。


    A review of the evidence of the dark matter found in universe and the problems faced by the standard model. To address these issues as well as the possible relationship between the new physics beyond the standard model and dark matter, and given the selection condition of dark matter and possible candidates of the weakly-interacting massive particles (WIMPs). The correlation between the column surface density and the halo core radius of the dark matter halos of galaxies and cluster of galaxies is discussed, and the other models are compared. We find that the surface density within the halo characteristic radius r* is not an universal quantity; The new model (hidden dark matter)proposed in the study of dark matter is described. At last, the research progress of dark matter experiment in China is commented. At the end of 2016, the first batch of DAMPE data may be given;No significant excess events of WIMPS were found in the first stage of both the CDEX and PandaX experiments located in the China Jinping Underground Laboratory(CJPL). Look forward to their the next stage of these experiments in CJPL.
  • [1] James Lindesay. Foundations of Quantum Gravity[M]. New York:Cambridge University Press, 2013:309.
    [2] LU Jianxin. Theoretical physics and its frontier I[M]. Beijing:Peking University press, 2014:87; KOMATSU E. AStrophy J suppl. 2001, 192:18, ArXiv:1001:1538[astro-ph.co].(in Chinese) (卢建新. 理论物理及其交叉学科前沿I[M]. 北京:北京大学出版社, 2014:87.)
    [3] Planck Collaboration. 2014, arXiv:1303.5076v3.
    [4] CHANG Jin. Space exploration dark matter satellite[C]. The twenty-eighth Conference on space technology science, Lanzhou, 2015. (in Chinese) (常进. 空间探测暗物质卫星, 第二十八届空间技术科学中心会议, 兰州, 2015.)
    [5] LI Jin, YUE Qian. New Progress of CJPL and CDEX[C].The fteenth Nuclear Physics Conference, shanghai, 2013.
    [6] BORRIELLO A, SALUCCI P. Mon Not Roy Astron Soc, 2001, 323:285. arXiv:astro-ph/0001082.
    [7] CLOWE D, BRADAE M, GONZALEZ A H, et al. Astrophysics J. 2006, 648:1009.
    [8] del POPOLO A. Modern Physics D, 2014, 23:1430005.
    [9] JUNGMAN G, KAMIONKOWSKI M, GRIESI K. Phys Rep, 1996, 267, 195.
    [10] KAMIONKOWSKI M, MICHAEL K. Phys Rev D, 1991, 43, 1774; JUNGMAN G, KAMIONKOWSKI M. Phys Rev D, 1994, 49, 2316.
    [11] LI Tianjun. Review of dark matter models[C]. workshop on cosmology, dark matter, dark engery, Beijing. 2011.
    [12] HERRERO M. arXiv:hep-ph/9812242; BURGESS C P, MOORE G D. The Standard Model:A Primer[M]. New York:Cambridge University Press, 2007.
    [13] RANDALL L, SUNDRUM R. Phys Rev Lett, 1999, 83:3370.
    [14] JIA Bei, LEE Xiguo, ZHANG Pengming, Int J Theor Phys, 2008, 47:3391.
    [15] KOLINNIKOV S Y, KHLOPOVMY. Sov J Nucl Phys, 1982, 36:472.
    [16] GROSS C, LEBEDEV O, MAMBRINI Y. JHEP, 2015, 08:158.
    [17] Gupta A, Primulando R, Saraswat P. JHEP, 2015, 09:079.
    [18] FUKUDA Y, HAYAKAWA T, ICHIHARA E, et al. (SuperKamiokande Collaboration) Phys Rev Lett, 1998, 81:1562.
    [19] AHMAD Q R, ALLEN R C, ANDERSEN T C, et al. (SNO Collaboration). Phys Rev Lett, 2002, 89:011301.
    [20] AN F P, BAI J Z, BALANTEKIN A B, et al. Phys Rev Lett, 2012, 108:171803; ArXiv:1202.6181v1.
    [21] BAKER C A, DOYLE D D, GELTENBORT P, et al. Phys Rev Lett, 2006, 97:131801.
    [22] SAURYA D, DEBAPRASAD M, SOUMITRA S. JHEP, 2008, 05:042; Dey P, Mukhopafhyaya B, SenGupta S. Phys Rev D, 2009, 80:055029.
    [23] LEE Xiguo, JIA Bei. Nuclear Physics Review, 2001, 28(3):276. (in Chinese) (李希国, 贾贝. 原子核物理评论, 2011, 28:276.)
    [24] LEE Xiguo, BALDO M, DUAN Yishi. GRG, 2002, 34(10):1569; DUAN Yishi, LEE XIGUO. Helv Phys Acta, 1995, 68:513.
    [25] LEE Xiguo, LIU Ziyu, LI Yongqing, et al. Modern Physics Letter A, 2008, 23:1055.
    [26] Reyes L M, AGUILAR J E M. Class Quantum Grav, 2011, 28:215007.
    [27] CHANG Jin, FENG Lei, GUO JianHua, et al. ACIENTIA SINICA Physica, Mechanica & Astronomica, 2015, 45:119510. (in Chinese) (常进, 冯磊, 郭建华, 等. 中国科学:物理学力学天文学, 2015, 45:119510.)
    [28] Scherrer R J, Turner M S. Phys Rev D, 1986, 33:1585.
    [29] RUBIN V C, THONNARD N, FORD W K, Jr, Astrophys J, 1980, 238:471.
    [30] JONATHA N, Feng L. Ann Rev Astron AStrophys, 2010, 48:495.
    [31] GOLDBERG H. Phys Rev Lett, 1983, 50:1419.
    [32] KLEIN O. Z Phys, 1926, 37:895.
    [33] APPELQUIST T, CHENG H C, DOBRESCU B A. Phys Rev D, 2001, 67:055002.
    [34] DATTA A, DEY U K, SHAW A, et al. Phys Rev D, 2013, 87:076002.
    [35] DIMOPOULOS S, HOWE K, MARCH-RUSSELL J, et al. JHEP, 2015, 06:041.
    [36] CHENG H C, FENG J L, MATCHEV K T. Phys Rev Lett, 2002, 89:211301.
    [37] ATLAS Collaboration, ATLAS-CoNF-015-081.
    [38] CMS Collaboration, CMS PAS EXO-15-004.
    [39] HAN C, LEE H M, PARK M, et al. arXiv:1512.0637vl[hepph].
    [40] PECCEI R D, QUINN H R. Phys Rev lett, 1977, 38:1440.
    [41] ABBOTT L F, SIKIVIE P. Phys Lett, B, 1983, 120:133.
    [42] SHIFMAN M A, VAINSHTEIN A I, ZAKHAROV V I. Nucl Phys, B, 1980, 166:493.
    [43] ZHITNITSKY A R. Sov.J. Nucl Phys, 1980, 31:260.
    [44] RAFFELT G G. Lect Notes Pgys, 2008, 741:51.
    [45] BAE K J, HUH J H, KIM J E. JCAP, 2008, 0809:005.
    [46] YAMAGUCHI M, KAWASAKI M, YOKOYAMA J. Phys Rev Lett, 1999, 82:4578.
    [47] SIKIVIE P. Phys Rev Lett, 1983, 51:1415.
    [48] FENG J L, RAJARAMAN A, TAKAYAMA F. Phys Rev D, 2003, 68:063504.
    [49] WANG F, YANG J M. Eur Phys J C, 2004, 38:129.
    [50] ROSZKOWSKI L, RUIZ R, DE AUSTRI, et al. JHEP, 2005, 08:080. Nucl Phys B, 1982, 207:96.
    [51] DINE M, NELSON A E, NIR Y, et al. Phys Rev D, 1996, 53:2658.
    [52] ZWICKY F. Helvetica Physica Acta, 1933, 6:110.
    [53] FUSCO-FEMIANO R, HUGHES J P. Astrophys.J. 1994, 429:545.
    [54] EVANS N W, WILKINSON M I. MON Not R Astron Soc, 2000, 316:929.
    [55] MCMillan P L. Mon Not R Astron Soc, 2001, 414:2446.
    [56] RUBIN V C, FORD W K. Astrophys J. 1970, 159:379.
    [57] SABUROVA A, DEL POPOLO A. 2014, MNRAS, 445:3512.
    [58] KORMENDY J, FREEMAN K C. Astronomical Sosiety of the Paci c[C]. Sydney:IAU Symposium, 2004:377.
    [59] Milgrom M. APJ, 1983, 370:371.
    [60] BOYARSKY A, RUCHAYSKIY O, LAKUBOVSKYI D, et al. 2009, arXiv:0911.1774.
    [61] DEL POPOLO A, KROUP P. Astron, Astrophys, 2009, 502:733.
    [62] SILVA J M, LIMA J A S, SOUZA R E,et al. JCAP, 2016, 05:021.
    [63] DEL POPOLO A, LEE Xiguo. Baltic Astronomy, 2016, 25:195.
    [64] STADEL J. POTTER D, MOORE B, et al. 2009, Mon R Astron Soc, 398:21.
    [65] GOVERNATO F, BROOK C, MAYER L, et al. 2010, Nature, 463:203.
    [66] CARDONE V F, TORTORA C. MNRAS, 2010, 409:1570.
    [67] BOYARKY A, NERONOV A, IAKUBOVSKYI O, et al. Phys Rev Lett, 2010, 1301.
    [68] SABUROVA A, DEL POPOLO A. MNRAS, 2014, 3512.
    [69] BEREZHIANI Z G, DOLGOV A D, MOHAPATRA R N. Phys Lett B, 1996, 375:26.
    [70] IANATIEV A Y, VOLKAS R R. Phys Rev D, 2003, 71:023518.
    [71] FOOT R. Phys Rev D, 2004, 69:036001.
    [72] YANG W M. arXiv:1309.1955v6.
    [73] YANG W M. Nucl Phys B, 2014, 885:505.
    [74] MCDONALD J. Phys Rev D, 1994, 50:3637.
    [75] BURGESS C P, Pospelov M, TER VELDHUIS T. Nucl Phys B, 2001, 619:709.
    [76] YAGUNA C E. JCAP, 2009, 0903:003.
    [77] YUE Qian, CJPL and CDEX of China[C]. Beijing, 2011. (in Chinese) (岳骞. 中国锦屏极深地下实验室(CJPL)和中国暗物质实验(CDEX)[C]. 北京, 2011.)
    [78] ZHAO W, YUE Q, KANG K J, et al. Phys Rev D, 2013, 88:052004.
    [79] YUE Qian, KANG Kejun, LI Jianming. arXiv:1602. 02462vl.
    [80] XIAO Mengjiao. Science China:Physics, Mechanics & Astronomy, 2014, 57:2024.
    [81] XIAO Xiang, CHEN Xun, TAN Andi, et al. Phys Rev D, 2015, 92:052004.
    [82] TAN Andi, XIAO Xiang, CUI Xiangyi, et al. arXiv:1602. 06563vl.
    [83] YANG Changgen. Detection of dark matter RD in Institute ofhigh energy Physics[C]. Beijing, 2013. (in Chinese) (杨长根. 高能所暗物质探测[C]. 北京, 2013.)
    [84] GUO C, MA X H, WANG Z M, et al. arXiv:1602.04923vl.
    [85] ADRIANI O, BARBARINO G C, BAZILEVSKAYA G A, et al. Phys Rev Lett, 2010, 105:121101.
    [86] ACCARDO L, AGUILAR M, AISA D, et al. Phys Rev Lett, 2014, 113:121101.
    [87] AGUILAR M, AISA D, ALVINO A, et al. Phys Rev Lett, 2014, 113:121102.
    [88] HUANG Xiaoyuan, SMING TSAI Yue-Lin, YUAN Qiang, arXiv:1603.07119vl.
    [89] BISHARA F, CROLJO A, KAMENIK J F, et al. JHEP, 2015, 12:130.
    [90] BELANGER G, DELAUNAY C. arXiv:1603:03333vl.
  • 加载中
计量
  • 文章访问数:  828
  • HTML全文浏览量:  72
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-01
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-12-20

暗物质理论研究进展

doi: 10.11804/NuclPhysRev.33.04.392
    基金项目:  国家自然科学基金资助项目(11575254)
    作者简介:

    李希国(1961-),男,甘肃庆阳人,博士,从事理论物理与暗物质暗能量研究;E-mail:xgl@impcas.ac.cn

  • 中图分类号: O572.3

摘要: 评述了天体物理中暗物质的发现以及标准模型所面临的问题,综述了解决这些问题及标准模型之外可能出现的新物理与暗物质的联系。介绍了暗物质粒子选择条件和可能的暗物质粒子的候选者;对圆柱形暗物质表面密度与星系和星系团暗物质晕的晕核半径的关系进行了讨论,与其他模型进行了比较,得出暗物质晕的特征半径r*的暗物质表面密度分布不是一个普适量;并叙述了近几年暗物质研究中提出的新理论模型-Hidden dark matter,最后叙述了中国暗物质实验探测研究的进展,2016年底DAMPE的第一批数据有可能给出;中国锦屏地下实验室(CJPL)的CDEX和PandaX合作组的第一期实验没有发现暗物质粒子存在的信号,期待他们下期的实验。


A review of the evidence of the dark matter found in universe and the problems faced by the standard model. To address these issues as well as the possible relationship between the new physics beyond the standard model and dark matter, and given the selection condition of dark matter and possible candidates of the weakly-interacting massive particles (WIMPs). The correlation between the column surface density and the halo core radius of the dark matter halos of galaxies and cluster of galaxies is discussed, and the other models are compared. We find that the surface density within the halo characteristic radius r* is not an universal quantity; The new model (hidden dark matter)proposed in the study of dark matter is described. At last, the research progress of dark matter experiment in China is commented. At the end of 2016, the first batch of DAMPE data may be given;No significant excess events of WIMPS were found in the first stage of both the CDEX and PandaX experiments located in the China Jinping Underground Laboratory(CJPL). Look forward to their the next stage of these experiments in CJPL.

English Abstract

李希国. 暗物质理论研究进展[J]. 原子核物理评论, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
引用本文: 李希国. 暗物质理论研究进展[J]. 原子核物理评论, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
LEE Xiguo. Progress of Theoretical Study on Dark Matter[J]. Nuclear Physics Review, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
Citation: LEE Xiguo. Progress of Theoretical Study on Dark Matter[J]. Nuclear Physics Review, 2016, 33(4): 392-408. doi: 10.11804/NuclPhysRev.33.04.392
参考文献 (90)

目录

    /

    返回文章
    返回