高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率

张珈铭 韩杰 包景东

张珈铭, 韩杰, 包景东. 量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率[J]. 原子核物理评论, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
引用本文: 张珈铭, 韩杰, 包景东. 量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率[J]. 原子核物理评论, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
ZHANG Jiaming, HAN Jie, BAO Jingdong. Heavy-ion Fusion Probability and Nuclear Fission Rate in a Quantum Non-Ohmic Environment[J]. Nuclear Physics Review, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
Citation: ZHANG Jiaming, HAN Jie, BAO Jingdong. Heavy-ion Fusion Probability and Nuclear Fission Rate in a Quantum Non-Ohmic Environment[J]. Nuclear Physics Review, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385

量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率

doi: 10.11804/NuclPhysRev.33.04.385
基金项目: 国家自然科学基金资助项目(11175021);高等学校博士学科点专项科研基金(20120003110025)
详细信息
    作者简介:

    张珈铭(1989-),男,山东泰安人,博士研究生,从事理论物理与原子核物理研究

    通讯作者: 包景东,E-mail:jdbao@bnu.edu.cn
  • 中图分类号: O415.6

Heavy-ion Fusion Probability and Nuclear Fission Rate in a Quantum Non-Ohmic Environment

Funds: National Natural Science Foundation of China(11175021); Specialized Research Foundation for Doctoral Program of Higher Education of China(20120003110025)
  • 摘要: 考虑处于量子非欧姆阻尼环境下的重核熔合及热核裂变系统的动力学,给出了数值模拟相应c数量子广义朗之万方程的方法。其中提出的产生任意关联量子色噪声的数值方法,适用于任意非马尔科夫过程噪声的产生。利用此方法计算了重核熔合概率,结果表明量子涨落对重核熔合具有“低抬高压”的效应:当粒子的初始动能小于(大于)临界初始动能时,量子涨落会增大(减小)粒子鞍点通过概率。非欧姆阻尼环境中粒子稳定通过概率随δ值的变化是非单调的,且当粒子初始动能小于(大于)临界初始动能,量子涨落会使稳定通过概率随δ值变化曲线的极大值位置向右(向左)漂移。此外,在热核裂变系统中,超欧姆阻尼环境会增大裂变速率,而量子涨落不仅显著增大裂变速率,还使裂变速率随δ值变化曲线的极大值位置发生漂移。


    Dynamics of heavy-ion fusion and nuclear fission system in a quantum non-Ohmic environment have been considered and a numerical simulation method to solve the corresponding c-number quantum generalized Langevin equation is proposed. The method of generating quantum colored noise with arbitrary correlation can be applied to generate noise of arbitrary non-Markov process. Calculating fusion probability of heavy nuclei with this method, the result has shown that the passing probability is enlarged (decreased) by the quantum fluctuation when the initial kinetic energy of the particle is less than (greater than) the critical initial kinetic energy. Steady passing probability of particle in non-Ohmic environment versus is nonmonotonic. Quantum fluctuation makes the maximum position of the curve drift towards right (left), when the initial kinetic energy of the particle is less than (greater than) the critical initial kinetic energy. Furthermore, nuclear fission rate is larger in super-Ohmic environment. Quantum fluctuation enlarges nuclear fission rate and makes the the maximum position of nuclear fission rate versus δ drift.
  • [1] SIEMEN P J, JENSEN A S. Elements of nuclei:many-body physics with the strong interaction[M]. Addison Wesley Publishing Company, 1987.
    [2] HASSE R W, MYERS W D. Geometrical relationships of macroscopic nuclear physics[M]. Springer Science & Business Media, 2012.
    [3] HOFMANN H. Phys Rep, 1997, 284(4):137.
    [4] BOILLEY D, SURAUD E, YASUHISA A, et al. Nucl Phys A, 1993, 556(1):67.
    [5] BOILLEY D, ABE Y, AYIK S, et al. Z Phys A, 1994, 349(2):119.
    [6] ABE Y, AYIK S, REINHARD P G, et al. Phys Rep, 1996, 275(2):49.
    [7] KOLOMIETZ V M, RADIONOV S V, SHLOMO S. Phys Rev C, 2001, 64(5):054302.
    [8] RADIONOV S, ÅBERG S. Phys Rev C, 2005, 71(6):064304.
    [9] GRABERT H, SCHRAMM P, INGOLD G L. Phys Rev Lett, 1987, 58(13):1285.
    [10] WEISS U. Quantum dissipative systems[M]. Singapore:World scienti c, 1999.
    [11] MAYGER A, POTTIER N. Phys Rev E, 2002, 65(5):056107.
    [12] POTTIER N. Physica A, 2003, 317(3):371.
    [13] BAO J D. Nucl Phys Rev, 2006, 23(4):413. (in Chinese) (包景东. 原子核物理评论, 2006, 22(4):413.)
    [14] BAO J D, ZHUO Y X, WU X Z. High Energy Physics and Nuclear Physics, 1993, 17(4):362. (in Chinese) (包景东,卓益忠,吴锡真. 高能物理与核物理, 1993, 17(4):362.)
    [15] BANERJEE D, BAG B C, BANIK S K, et al. Phys Rev E, 2002, 65(2):021109.
    [16] BANIK S K, BAG B C, RAY D S. Phys Rev E, 2002, 65(5):051106.
    [17] BARIK D, BAG B C, Ray D S. J Chem Phys, 2003, 119(24):12973.
    [18] BANERJEE D, BAG B C, BANIK S K, et al. J Chem Phys., 2004, 120(19):8960.
    [19] GARC IA-OJALVO J, SANCHO J M, RAMIREZ-PISCINA L. Phys Rev A, 1992, 46(8):4670.
    [20] ABE Y, BOILLEY D, GIRAUD B G, et al. Phys Rev E, 2000, 61(2):1125; BOILLEY D, ABE Y, BAO J D. Eur Phys J A, 2003, 18(4):627.
    [21] BAO J D. J Chem Phys, 2006, 124(11):114103.
    [22] BAO J D. Nucl Phys Rev, 2005, 22(4):370. (in Chinese) (包景东. 原子核物理评论, 2005, 22(4):370.)
    [23] BAO J D, ZHUO Y Z. Phys Rev C, 2003, 67(6):064606.
    [24] BAO J D, JIA Y. J Stat Phys, 2006, 123(4):861.
    [25] BAO J D, JIA Y. Phys Rev C, 2004, 69(2):027602.
    [26] JIA Y, BAO J D. Nucl Phys Rev, 2004, 21(4):385. (in Chinese) (贾莹,包景东. 原子核物理评论, 2004, 21(4):385.)
    [27] ARRAY AS M, KAUFMAN I KH, LUCHINSKY D G, et al. Phys Rev Lett, 2000, 84(12):2556
    [28] POLLAK E. J Chem Phys, 1986, 85(2):865.
    [29] POLLAK E, GRABERT H, HÄnggi P. J Chem Phys, 1989, 91(7):4073. Heavy-ion
  • 加载中
计量
  • 文章访问数:  615
  • HTML全文浏览量:  48
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 修回日期:  2016-06-22
  • 刊出日期:  2016-12-20

量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率

doi: 10.11804/NuclPhysRev.33.04.385
    基金项目:  国家自然科学基金资助项目(11175021);高等学校博士学科点专项科研基金(20120003110025)
    作者简介:

    张珈铭(1989-),男,山东泰安人,博士研究生,从事理论物理与原子核物理研究

    通讯作者: 包景东,E-mail:jdbao@bnu.edu.cn
  • 中图分类号: O415.6

摘要: 考虑处于量子非欧姆阻尼环境下的重核熔合及热核裂变系统的动力学,给出了数值模拟相应c数量子广义朗之万方程的方法。其中提出的产生任意关联量子色噪声的数值方法,适用于任意非马尔科夫过程噪声的产生。利用此方法计算了重核熔合概率,结果表明量子涨落对重核熔合具有“低抬高压”的效应:当粒子的初始动能小于(大于)临界初始动能时,量子涨落会增大(减小)粒子鞍点通过概率。非欧姆阻尼环境中粒子稳定通过概率随δ值的变化是非单调的,且当粒子初始动能小于(大于)临界初始动能,量子涨落会使稳定通过概率随δ值变化曲线的极大值位置向右(向左)漂移。此外,在热核裂变系统中,超欧姆阻尼环境会增大裂变速率,而量子涨落不仅显著增大裂变速率,还使裂变速率随δ值变化曲线的极大值位置发生漂移。


Dynamics of heavy-ion fusion and nuclear fission system in a quantum non-Ohmic environment have been considered and a numerical simulation method to solve the corresponding c-number quantum generalized Langevin equation is proposed. The method of generating quantum colored noise with arbitrary correlation can be applied to generate noise of arbitrary non-Markov process. Calculating fusion probability of heavy nuclei with this method, the result has shown that the passing probability is enlarged (decreased) by the quantum fluctuation when the initial kinetic energy of the particle is less than (greater than) the critical initial kinetic energy. Steady passing probability of particle in non-Ohmic environment versus is nonmonotonic. Quantum fluctuation makes the maximum position of the curve drift towards right (left), when the initial kinetic energy of the particle is less than (greater than) the critical initial kinetic energy. Furthermore, nuclear fission rate is larger in super-Ohmic environment. Quantum fluctuation enlarges nuclear fission rate and makes the the maximum position of nuclear fission rate versus δ drift.

English Abstract

张珈铭, 韩杰, 包景东. 量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率[J]. 原子核物理评论, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
引用本文: 张珈铭, 韩杰, 包景东. 量子非欧姆阻尼环境中的重核熔合概率及热核裂变速率[J]. 原子核物理评论, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
ZHANG Jiaming, HAN Jie, BAO Jingdong. Heavy-ion Fusion Probability and Nuclear Fission Rate in a Quantum Non-Ohmic Environment[J]. Nuclear Physics Review, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
Citation: ZHANG Jiaming, HAN Jie, BAO Jingdong. Heavy-ion Fusion Probability and Nuclear Fission Rate in a Quantum Non-Ohmic Environment[J]. Nuclear Physics Review, 2016, 33(4): 385-391. doi: 10.11804/NuclPhysRev.33.04.385
参考文献 (29)

目录

    /

    返回文章
    返回