Abstract:
The non-collective rotational behavior of the yrast band is robustness for nuclei in the presence of random interactions, where the mathematical expectation of the energy levels of yrast state is positively correlated with the square of the angular momentum. In this paper, the even-even nuclei, including
24Mg、
28Si、
46Ca、
46Ti, and odd-mass nuclei, including
21Ne、
43Sc, were calculated in the
sd shell and
pf shell model spaces in the presence of random interactions, which verifies the robustness of the non-collective rotational behavior in even-even nuclei with nonzero-spin ground state and odd-mass nuclei. Additionally, the linear correlation between the mathematical expectation of energy levels and the square of angular momentum is very good. When the minimum angular momentum level is higher than the maximum angular momentum level, the phenomenon of “reverse” non-collective rotation is also prevalent. Furthermore, we compare and discuss the influence of the ground states of even-even nuclei on the structure of yrast band, the results show that the even-even nuclei with nonzero-spin ground state will exhibit more randomness of the yrast band.