高级检索
陈保义, 文流渊, 施舒哲. 相对论重离子碰撞中的重夸克势[J]. 原子核物理评论, 2024, 41(1): 594-599. DOI: 10.11804/NuclPhysRev.41.2023CNPC02
引用本文: 陈保义, 文流渊, 施舒哲. 相对论重离子碰撞中的重夸克势[J]. 原子核物理评论, 2024, 41(1): 594-599. DOI: 10.11804/NuclPhysRev.41.2023CNPC02
Baoyi CHEN, Liuyuan WEN, Shuzhe SHI. Heavy Quark Potential in the Relativistic Heavy-ion Collisions[J]. Nuclear Physics Review, 2024, 41(1): 594-599. DOI: 10.11804/NuclPhysRev.41.2023CNPC02
Citation: Baoyi CHEN, Liuyuan WEN, Shuzhe SHI. Heavy Quark Potential in the Relativistic Heavy-ion Collisions[J]. Nuclear Physics Review, 2024, 41(1): 594-599. DOI: 10.11804/NuclPhysRev.41.2023CNPC02

相对论重离子碰撞中的重夸克势

Heavy Quark Potential in the Relativistic Heavy-ion Collisions

  • 摘要: 在高温高密的夸克胶子等离子体(QGP)中,重夸克的相互作用势会受到周围部分子的影响而发生改变。一般认为,重夸克偶素的相互作用势的实部应该介于重夸克偶素的自由能F和内能U之间,且具体形式依赖于温度。而重夸克偶素的虚部相互作用势则来自朗道阻尼效应。基于含时薛定谔方程模型,采用不同的重夸克相互作用势,研究重夸克偶素的波函数在QGP中的演化,并计算重夸克偶素的核修正因子。通过同时考虑冷核效应和热核效应,把理论计算的底夸克偶素的核修正因子与实验数据对比,发现当重夸克偶素的实部相互作用势接近内能U时,能够较好地解释实验现象,并能看到不同底夸克偶素的连续压低现象,即更高激发态的底夸克偶素由于其自身束缚能更小而更容易被解离。薛定谔方程模型,有利于建立有限温度重夸克势与实验观测量之间的直接联系,并确定相互作用势的形式。

     

    Abstract: In a high-temperature and high-density quark-gluon plasma (QGP), the thermal partons modify the heavy quark potential. It is widely accepted that the real part of the heavy quark potential should fall within the range of the free energy F and the internal energy U of heavy quarkonium, depending on the temperature. The imaginary part of the interaction potential of heavy quarkonium is derived from the Landau damping effect. In this study, we investigate the evolution of the wave function of heavy quarkonium in the QGP and calculate the nuclear modification factor of heavy quarkonium using the time-dependent Schrödinger equation model and different interaction potentials for heavy quarks. We simultaneously consider both the cold nuclear effects and the hot nuclear effects, and compare the theoretical calculations of the nuclear modification factor of bottomonium with experimental data. Our findings reveal that when the real part of the interaction potential of heavy quarkonium approaches the internal energy U, it can better explain the experimental phenomena. Additionally, we observe the phenomenon of sequential suppression of different bottomonium states, indicating that higher excited states of bottomonium are more easily dissociated due to their smaller binding energies. The Schrödinger equation model is a valuable tool for establishing a direct connection between the finite-temperature heavy quark potential and experimental observables, and for determining the form of the interaction potential.

     

/

返回文章
返回