高级检索
党世武, 黎鑫鑫, 崔文娟, 马雯静, 周德泰, 贺智勇, 尹凯, 顾锐锋, 牛海华. 基于遗传-PID算法的CiADS束流强度控制研究及其DCS实现[J]. 原子核物理评论, 2023, 40(3): 472-477. DOI: 10.11804/NuclPhysRev.40.2022085
引用本文: 党世武, 黎鑫鑫, 崔文娟, 马雯静, 周德泰, 贺智勇, 尹凯, 顾锐锋, 牛海华. 基于遗传-PID算法的CiADS束流强度控制研究及其DCS实现[J]. 原子核物理评论, 2023, 40(3): 472-477. DOI: 10.11804/NuclPhysRev.40.2022085
Shiwu DANG, Xinxin LI, Wenjuan CUI, Wenjing MA, Detai ZHOU, Zhiyong HE, Kai YIN, Ruifeng GU, Haihua NIU. Study of Beam Intensity Control for CiADS Facility Based on Genetic PID Algorithm and Its Implementation in DCS Control System[J]. Nuclear Physics Review, 2023, 40(3): 472-477. DOI: 10.11804/NuclPhysRev.40.2022085
Citation: Shiwu DANG, Xinxin LI, Wenjuan CUI, Wenjing MA, Detai ZHOU, Zhiyong HE, Kai YIN, Ruifeng GU, Haihua NIU. Study of Beam Intensity Control for CiADS Facility Based on Genetic PID Algorithm and Its Implementation in DCS Control System[J]. Nuclear Physics Review, 2023, 40(3): 472-477. DOI: 10.11804/NuclPhysRev.40.2022085

基于遗传-PID算法的CiADS束流强度控制研究及其DCS实现

Study of Beam Intensity Control for CiADS Facility Based on Genetic PID Algorithm and Its Implementation in DCS Control System

  • 摘要: 在加速器驱动次临界系统里,束流强度的自动控制非常重要。本工作研究了加速器驱动嬗变研究装置(CiADS)束流强度的比例-积分-微分(PID)自动控制技术及其实现。 设计了优化的遗传算法来提取PID控制器的参数,优化的遗传算法将PID控制参数用一串二进制码表示。在种群初始化时,充分考虑了每串二进制码最高有效位的初始化,大大地加快了寻找最佳PID参数值的速度。参照加速器低能传输段质子束高斯分布特征建立了束流强度模型,并仿真验证了遗传算法得到PID控制参数的可靠性。仿真计算结果表明,束流半高宽的变化或者束流中心的偏离均会导致束流强度的变化。利用遗传算法得到的PID控制参数可以精确地控制束流强度至设定值并保持稳定。然后,在分布式控制系统(DCS)中实现了束流强度的自动和手动控制功能。在自动控制功能里,束流强度测量值送入DCS系统并与设定值比较,通过PID控制器计算出新的光阑孔径值和光阑旋转角,并用来调节束流强度。最后,利用DCS系统手动调节功能测试了光阑转角的精度。测量结果表明,光阑转角偏差小于0.002°,束流强度的调节精度达到0.000 05 A。

     

    Abstract: In an accelerator driven sub-critical system(ADS), it is very important to automatically control the beam intensity of the accelerator. The method for controlling the beam intensity with a proportion-integral-differential(PID) controller has been studied for the China initiative Accelerator Driven System(CiADS) facility. Firstly, in order to quickly find the global optimal parameters of the PID controller, Genetic Algorithm is used for determining the parameters of the PID controller, where the method for initializing the population in the algorithm has been improved. Secondly, a model of beam intensity is built by considering the proton beam with a Gaussian distribution of a given FWHM(Full Width at Half Maximum) at the Low Energy Beam Transport(LEBT) line of the accelerator, in order to evaluate the proposed control method with the extracted PID parameters. The simulations based on the model of beam intensity have indicated that the beam intensity varies with either the different value of FWHM or the different position of beam center. Thirdly, both the automatic and manual control functions for the beam intensity have been implemented in a distributed control system(DCS) system. In the automatic control function, the measured value of the beam intensity is sent to the DCS system and is compared with the setting value. Then, the new values of the aperture size and the rotation angle of the aperture are calculated with the PID controller and are used to adjust the beam intensity. Finally, the accuracy of the rotation angle of the aperture is measured by using the manual function in the DCS system. The measurement results show that the deviation of the angle adjustment of the aperture is less than 0.002 degree, and the adjustment accuracy of the beam intensity is 0.000 05 A.

     

/

返回文章
返回