高级检索

ADS堆功率控制研究及其在DCS系统的实施

Study of Power Control for ADS System and Its Implementation in DCS Control System

  • 摘要: 研究了基于加速器束流强度调节来控制中国加速器驱动嬗变研究装置(CiADS)次临界堆功率的方法。束流强度的调节是通过比较堆功率的测量值和设定值,由PID (比例-积分-微分)控制器自动控制可调光阑的孔径大小完成的。为了评估所提出的自动控制方法,基于点堆动力学方程建立了CiADS次临界堆堆芯模型。基于CiADS堆芯模型的仿真研究表明,反应堆功率随着束流强度的变化而变化,调节可调光阑能有效地控制次临界堆功率。最后,在分布式控制系统(DCS)中实现了堆功率的自动和手动控制功能。在自动控制功能里,堆功率测量值送入DCS系统并与设定值进行比较。通过PID控制器计算出新的光阑孔径值,并将其发送至光阑驱动电机系统。此外,还设立了手动调节功能,即操作员通过手动设定光阑孔径值即可改变加速器束流强度和反应堆功率。

     

    Abstract: The control method for the reactor power by adjusting the beam intensity has been studied for the China initiative Accelerator Driven System(CiADS) facility. In the proposed control method, the beam intensity can be adjusted continuously by changing the aperture size. The aperture size is adjusted automatically based on the PID controllers by comparing the setting power with the measured value. To evaluate the proposed method, a CiADS core model is built based on the point reactor kinetics equation. The simulations based on the CiADS core model have indicated that the reactor power varies with the beam intensity and that the reactor power can be controlled effectively by adjusting the aperture size. Finally, the automatic and manual control functions for the reactor power have been implemented in a Distributed Control System(DCS). In the automatic control function, the measured value of the reactor power is sent to the input-output model of DCS system and is compared with the setting value. Then, the new value of the aperture size is calculated with the PID controller and is sent the drive motor system of the aperture. In addition, the reactor power can also be adjusted by setting manually the aperture size in the control room.

     

/

返回文章
返回