高级检索

2K超导低温垂测控制系统关键技术

The Key Technology of 2K Superconducting Cryogenic Vertical Measurement Control System

  • 摘要: 根据加速器驱动次临界系统质子超导直线加速器样机(CAFe)对于低温垂测系统的要求,设计了2K超导低温垂测控制系统。该系统的主要难点之一是用简单可靠的方式实现2K过程控制,二是对回温过程中杜瓦内压强的控制。为了解决这两点,本工作使用实验物理与工业控制系统中的集成包Sequencer实现了对气体置换、腔体降温等顺序过程的控制,能够方便实现多种流程控制。对于回温过程,使用可编程逻辑控制器等部件作为硬件控制部分,使用模糊PID控制加热器来稳定杜瓦内压强,相较于传统的PID能够实现更小的响应时间和超调量,最终为实现2K超导低温垂测控制系统提供了可行高效的解决方法。

     

    Abstract: According to the requirements for the cryogenic vertical measurement system of the Chinese ADS Front-end Demo Linac(CAFe), a 2K superconducting cryogenic vertical measurement control system is designed. One of the main difficulties of the system is to achieve 2K process control in a simple and reliable way, and the other is the control of the pressure in the Dewar during the temperature recovery process. To address these two points, Sequencer, an integrated package in the Experimental Physical and Industrial Control System(EPICS), was used in the paper to implement control of sequential processes such as gas displacement and cavity cooling, enabling easy implementation of multiple process controls. For the temperature recovery process, components such as a Programmable Logic Controller(PLC) are used as the hardware control part, and fuzzy Proportion Integral Differential(PID) a control of the heater is used to stabilize the pressure in the Dewar. The smaller response time and overshoot compared to conventional PIDs ultimately provide a viable and efficient solution to achieve a 2K superconducting cryogenic vertical control system.

     

/

返回文章
返回