Abstract:
Lead-bismuth eutectic(LBE) is the candidate material of spallation target for China initiative Accelerator Driven System(CiADS). Long-term irradiation makes the LBE highly radioactive. Most of the spallation target radionuclide studies focused on the effects of the proton beam and ignored fission neutrons from the reactor. In this paper, both the fission neutrons and the high-energy protons have been taken into account in the radionuclide calculations of LBE and spallation target structural parts by coupling codes FLUKA and MCNP. Contributions from the fission neutron and the high-energy proton have been compared in the aspects of the activity, main radionuclides, toxicity, and the decay photon of radioactive products. The main shell, guide tube, and beam tube are significantly affected by the fission neutron activation. When the reactor tends to be critical, the fission neutron-induced LBE target activations are even greater than that induced by the proton beam. In the LBE itself, 96.66% of
210Po is induced by the fission neutrons. These results illustrate that fission neutrons are also essential for the radionuclides calculation of LBE and its structural parts. In addition, this study provides reference data for the radiation protection of CiADS and a more accurate method for the radionuclides study of the spallation target in ADS systems.