高级检索

原子核Gamow-Teller共振和β衰变寿命的超越平均场描述

Beyond Mean-field Description of Nuclear Gamow-Teller Resonance and β-decay Half-lives

  • 摘要: 原子核的β衰变是决定宇宙中从铁到铀重元素合成的关键核过程之一。原子核β衰变的主导核跃迁是Gamow-Teller(GT)跃迁,因此,研究原子核β衰变寿命的关键是准确描述原子核的GT跃迁。描述原子核GT跃迁和β衰变寿命最常用的理论模型之一为无规相位近似(RPA)模型。然而,由于该模型仅考虑了一粒子一空穴激发组态,因此无法给出GT共振宽度,并容易高估β衰变寿命。为了克服上述困难,基于Skyrme密度泛函,发展了包含粒子振动耦合效应的无规相位近似(RPA+PVC)模型。相比于RPA模型,该模型在组态空间进一步考虑了一粒子一空穴和声子的耦合组态,从而包含了超越平均场的多体关联效应。为了推广至开壳原子核的研究,进一步考虑了对关联效应,发展了包含准粒子振动耦合效应的准粒子无规相位近似(QRPA+QPVC)模型。基于上述模型,研究了幻数原子核和超流原子核的GT跃迁、β衰变和β+/电子俘获。研究发现,采用同一组Skyrme相互作用参数SkM*,上述模型能够重现实验测量的GT共振宽度和跃迁强度分布,部分解释实验观测的GT跃迁强度压低问题,并同时改进对β衰变寿命的描述。该文针对上述最新研究进展进行了综述,并对将来的发展方向给出展望。

     

    Abstract: Nuclear β decay is one of the key nuclear processes that determine how the heavy elements from Fe to U in the universe were made. The dominant nuclear process in β-decay is the Gamow-Teller(GT) transition, so the key point for nuclear β-decay study is to describe nuclear GT transition accurately. One of the most widely used nuclear model is random phase approximation (RPA). However, since it only includes one-particle one-hole excitation configurations, this model cannot describe spreading width of GT resonance, and tends to overestimate the β-decay half-lives. To overcome these difficulties, based on Skyrme density functional, the random phase approximation with particle vibration coupling (RPA+PVC) model was developed. Compared to RPA model, it further includes the one-particle one-hole coupled with phonons in its configuration space, which includes many-body correlations beyond mean field approximation. To extend the study to open shell nuclei, the quasiparticle random phase approximation with quasiparticle vibration coupling model (QRPA+QPVC), which includes pairing correlations, was developed. Based on the above models, the GT excitation, β decay, β+/EC of magic nuclei and superfluid nuclei were studied. It is found that with the same Skyrme interaction SkM*, the experimental GT width and transition strength profile were well reproduced, the quenching phenomenon was partly explained, and the description of β-decay half-lives were improved at the same time. The recent progress of this study is reviewed, and in the meantime the perspectives for future developments are given.

     

/

返回文章
返回