摘要:
随着脉冲强流中子源的发展,对高性能中子探测器提出了更大的挑战,
3He气体资源严重短缺和高计数率中子探测器的迫切需求,已开始制约着中子源应用技术的发展。中国科学院高能物理研究所针对中子的特殊性,专门研发了一种陶瓷基材的nTHGEM(neutron Thick Gaseous Electron Multiplier)探测器用于中子探测。基于nTHGEM的中子探测器具有高计数率、高位置与时间分辨能力、增益大、制作工艺简单,且便于大面积制作的特点,是目前国际上发展替代
3He探测技术的重要方向之一。为了详细研究nTHGEM探测器的本身性能,本工作使用
55Fe放射源研究了nTHGEM探测器的增益、计数率稳定性、能量分辨率等关键参数与nTHGEM膜间电压、收集场强、漂移场强之间的关系,优化了nTHGEM探测器在不同工作气体中的工作参数,为后续进一步优化nTHGEM探测器设计和工艺奠定了基础。实验结果表明,单层nTHGEM探测器在Ar(90%)+CO
2(10%)混合气体中增益能达到10
3,探测器计数率稳定性良好。另外,还在中国原子能科学研究院的CARR反应堆(China Advanced Research Reactor)上进行了中子束流实验,通过狭缝测量到探测器位置分辨率为(3.01±0.03)mm(FWHM),已经接近高气压
3He MWPC中子探测器水平。
With the development of pulsed intense neutron source, the high-performance neutron detector poses more challenges. The severe shortage of
3He gas resources and the urgent need of neutron detector with high counting rate have begun to restrict the neutron source application technology development. In response to the particularity of neutrons, the Institute of High Energy Physics of CAS developed a nTHGEM(neutron Thick Gaseous Electron Multiplier)of ceramic substrate for neutron detection. The neutron detector based on nTHGEM is one of the most important directions for the development of alternative
3He detection technology in the world at present because of its high counting rate, high position and time resolution, large gain, simple fabrication process and large area production. In order to study the properties of nTHGEM detector in detail, this paper studied the relationship between nTHGEM detector's gain, counting rate stability, energy resolution and other key parameters and nTHGEM film voltage, collection field strength and drift field strength using
55Fe radioactive source, Optimized the working parameters of nTHGEM detector in different working gases, which laid the foundation for further optimization of nTHGEM detector design and process. The experimental results show that the single-layer nTHGEM detector has a gain of 10
3 in a Ar(90%)+CO
2(10%) mixed gas with good counting rate stability. In addition, a neutron beam experiment was performed on the China Advanced Research Reactor at the China Institute of Atomic Energy, and the position resolution of the detector was (3.01±0.03) mm (FWHM) measured by slits. Its performance is close to the high pressure
3He MWPC neutron detector level.