高级检索

中子星内部强子-夸克相变的有限尺度效应研究

Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars

  • 摘要: 在致密星体内部极高密度条件下,强子物质可能发生退禁闭相变成为夸克物质,即强子-夸克相变。这种相变过程对于中子星的性质有着重要影响。考虑库仑能和表面能的影响,即有限尺度效应,相变过程中的混杂相包含了被称为pasta相的几何结构。强子-夸克共存相的平衡条件是通过求总能量的最小值得到的。采用相对论平均场(RMF)模型来描述强子物质相,采用Nambu-Jona-Lasinio(NJL)模型来描述夸克物质相。有限尺度效应一定程度上增加了中子星的最大质量,增加幅度取决于强子-夸克表面张力的大小。有限尺度效应能够降低混杂相的范围,其结果介于Gibbs结构和Maxwell结构的结果之间。研究结果表明,中子星中可能包含一个混杂相的核心部分,其大小受到表面张力等参数的影响。


    It is generally considered that hadron matter may undergo a deconfinement phase transition becoming quark matter at very high density in massive neutron stars. This hadron-quark phase transition has important impact on neutron stars, which has received much attention. We consider finite-size effect in this phase transition process, which contains the impact of Coulomb energy and surface energy. By including this effect, the mixed phase forms the pasta structures. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions. We employ the relativistic mean-field(RMF) model to describe the hadronic phase, while the Nambu-Jona-Lasinio(NJL) model is used for the quark phase. We conclude that the finite-size effect will raise the stiffness of EOS, and then increase the maximum mass of neutron stars, which depend on the value of surface tension. Our results show that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those from the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface.

     

    Abstract: It is generally considered that hadron matter may undergo a deconfinement phase transition becoming quark matter at very high density in massive neutron stars. This hadron-quark phase transition has important impact on neutron stars, which has received much attention. We consider finite-size effect in this phase transition process, which contains the impact of Coulomb energy and surface energy. By including this effect, the mixed phase forms the pasta structures. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions. We employ the relativistic mean-field(RMF) model to describe the hadronic phase, while the Nambu-Jona-Lasinio(NJL) model is used for the quark phase. We conclude that the finite-size effect will raise the stiffness of EOS, and then increase the maximum mass of neutron stars, which depend on the value of surface tension. Our results show that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those from the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface.

     

/

返回文章
返回