利用羊八井中子监测器研究宇宙线的太阳日周期变化
Investigation on Solar Diurnal Variation Anisotropy of Cosmic Rays with Yangbajing Neutron Monitor
-
摘要: 通过对宇宙线周期变化研究可以得到宇宙线产生和传播区域的重要信息,是宇宙线长期研究的重要热点问题。利用位于西藏羊八井(地磁截止刚度:14.1 GeV) 的中子监测器2006 至2011年的观测数据,研究宇宙线的太阳日周期变化。在对中子监测器观测数据进行气压修正后,通过Lomb-Scargle 傅立叶变换法对修正后的数据进行周期分析,发现宇宙线计数率存在超过地球公转运动Compton-Getting 效应的太阳日周期变化,该周期变化可能是地球公转效应和宇宙线传播物理过程调制效应以及剩余气象效应的叠加。计算分析了1 日周期信号的振幅和初相位随时间的变化,发现1 日周期变化的初相位存在较为明显的年周期变化规律,这可能是地球公转和自转合成运动的结果;1 日周期变化幅度在2010 年后出现增大趋势。这些结果对宇宙线周期变化和各向异性的研究具有重要参考意义。With the study of the cosmic rays' solar diurnal variation we can get the important information about Cosmic Ray's production and propagation. It's important issues of cosmic rays' studies. We analyze the temporal variation of cosmic rays rate observed with the Yangbajing neutron monitor during 2006 to 2011, and nd semidiurnal and diurnal period signals included in the rates of cosmic rays with vertical rigidity equal to 14.1 GV. We have checked the time dependence of the phase and the amplitude of semidiurnal and diurnal anisotropy, and nd that the phase of diurnal signal varies yearly, it could be a synthetic movement of the earth's rotation and revolution. The amplitude before 2010 is obvious smaller than that after 2010. These results are of great reference value for studying the anisotropy and time variation of cosmic rays.Abstract: With the study of the cosmic rays' solar diurnal variation we can get the important information about Cosmic Ray's production and propagation. It's important issues of cosmic rays' studies. We analyze the temporal variation of cosmic rays rate observed with the Yangbajing neutron monitor during 2006 to 2011, and nd semidiurnal and diurnal period signals included in the rates of cosmic rays with vertical rigidity equal to 14.1 GV. We have checked the time dependence of the phase and the amplitude of semidiurnal and diurnal anisotropy, and nd that the phase of diurnal signal varies yearly, it could be a synthetic movement of the earth's rotation and revolution. The amplitude before 2010 is obvious smaller than that after 2010. These results are of great reference value for studying the anisotropy and time variation of cosmic rays.