高级检索

高电荷态ECR离子源引出束流4D 发射度测量仪设计

Design of a 4D Emittance Measurement Device for High Charge State ECR Ion Sources

  • 摘要: 为了进一步探究高电荷态电子回旋共振(ECR) 离子源引出束流品质和横向相空间耦合情况,根据中国科学院近代物理研究所高电荷态离子源引出束流发射度测量需求,针对束流流强为1 eμA∼1 emA,能量范围为10∼35 keV/q 的直流或脉冲高电荷态重离子束,设计了一台实时四维Pepper-pot 发射度测量仪。该Pepper-pot 型发射度测量仪具有响应时间快和工作范围宽等特点。针对强流重离子束诊断的特点,在结构与材料选择上做了设计与优化,并对获得图像的处理方法提出了具体的解决办法。For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP(Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eμA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made.

     

    Abstract: For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP(Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eμA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made.

     

/

返回文章
返回