高级检索

利用高能离子模拟研究反应堆结构材料中的辐照效应

Simulation of Radiation Effects in Structural Materials of Reactors Using High-energy Heavy,ion irradiations

  • 摘要: 简要介绍了载能粒子辐射损伤对反应堆结构材料性能的影响,阐述了载能粒子束特别是高能离子束开展模拟研究的优势,并举例说明了国内利用高能重离子模拟研究反应堆结构材料辐射效应取得的进展。实验结果和理论分析表明,载能离子特别是高能离子辐照非常适合用于模拟研究反应堆结构材料中由粒子辐射引起的材料微观结构和宏观性能变化,是模拟研究反应堆结构材料辐射效应的非常有效的手段。 Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles ( n, α and/or fission fragments) and highrate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present paper, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are introduced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is a very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials.

     

    Abstract: Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles ( n, α and/or fission fragments) and highrate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present paper, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are introduced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is a very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials.

     

/

返回文章
返回