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Beyond-mean-field Boson-fermion Description of
Odd-mass Nuclei
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Abstract: A recently developed method for calculating spectroscopic properties of medium-mass and heavy
atomic nuclei with an odd number of nucleons is reviewed, that is based on the framework of nuclear energy
density functional theory and the particle-core coupling scheme. The deformation energy surface of the even-
even core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s),
are obtained by a self-consistent mean-field calculation with the choice of the energy density functional and
pairing properties. These quantities are then used as a microscopic input to build the interacting boson-
fermion Hamiltonian. Only three strength parameters for the particle-core coupling are specifically adjusted
to selected data for the low-lying states of a particular odd-mass nucleus. The method is illustrated in a
systematic study of low-energy excitation spectra and electromagnetic transition rates of axially-deformed
odd-mass Fu isotopes. Recent applications of the method, to the calculations of the signatures of shapes
phase transitions in axially-deformed odd-mass nuclei, octupole correlations in neutron-rich odd-mass Ba

isotopes, are discussed.
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1 Introduction of BRIF

The interplay between single-particle and col-
lective degrees of freedom plays a '‘crucial role in
atomic nuclei™. At low energy, in even-even nu-
clei, nucleons are coupled pairwise and this is mani-
fest in low-lying rotational and vibrational collective
excitations!!. Many nuclear models have successfully
been applied in studies of the structure of even-even
nuclei™ ™. The situation is, however, more compli-
cated in nuclei with odd Z and/or N, because one has
to consider unpaired fermions explicitly and treat the
single-particle and collective degrees of freedom on the
1 6l Although most nuclear species have an
odd Z or/and N, microscopic studies of their structure
have not been pursued as extensively as in the case of
even-even systems, especially for medium-heavy and
heavy nuclei.

The energy density functional (EDF)[4’ 7 method
allows for a global description of low-energy proper-
ties of nuclei all over the chart of nuclides. Although
not as common as in the even-even case, a number of
calculations have been made within the EDF frame-
work at the mean-field level for odd-mass systems. In
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the EDF framework, a proper description of excited
states requires the inclusion of dynamical correlations
associated with the restoration of broken symmetries
and fluctuations via the symmetry-projected configura-
tion mixing calculation. A significant extension of this
type of calculation to odd-mass systems was made[g],
by explicitly taking into account the breaking of time-
reversal symmetry. Nevertheless, the practical appli-
cations of this approach to medium-heavy and heavy
nuclei are computationally demanding, and so far have
been limited to very light-mass systems[sfg].

Recently we have developed a novel theoretical
method™” for odd-mass nuclei, that is based on nu-
clear density functional theory and the particle-core
coupling scheme. In this approach the even-even core
is described in the framework of the interacting bo-
son model (IBM)[g], and the particle-core coupling
is modelled by the interacting boson-fermion model
(IBFM)[H]. The deformation energy surface of an
even-even nucleus as a function of the quadrupole
shape variables (3,7), as well as the single-particle en-
ergies and occupation probabilities of the odd nucleon,
are obtained in a self-consistent mean-field calculation

with a given EDF, and they determine the microscopic
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input for the parameters of the IBFM Hamiltonian.
Only the strength parameters of the boson-fermion
coupling terms in the IBFM Hamiltonian have to be
adjusted to the data for the low-lying states in the
considered odd-mass nucleus.

So far, the method has been applied to study
(i) the spherical-to-axially-deformed"** and (ii)
spherical—to—*y—soft[14715] shape phase transitions in
odd-mass nuclei, (iii) the octupole correlations in
neutron-rich Ba isotopes[ls}, (iv) the structure of

(17]

neutron-rich Kr isotopes' ", and (v) the prolate-to-

oblate shape transitions in the mass A~ 190 region[lg],
and to address (vi) the robustness of the method by
using both non-relativistic'> *° and relativistic'* **
EDFs. In this contribution, we focus on the top-
ics (i) and (iii). The results reported here are based
on the collaborations with D. Vretenar, T. Niksi¢, R.
Rodriguez-Guzmaéan, and L. M. Robledo.

In Sec. 2 the procedure to construct the IBFM
Hamiltonian from the SCMF calculation is outlined.
Sec. 3 presents results for spectroscopic calculations of
the odd-mass Eu isotopes as a proof of the method.
Sec. 4 highlights recent applications mentioned above,
followed by a short summary and concluding remarks

in Sec. 5.

2 Theoretical framework

The IBFM Hamiltonian for an odd-mass nucleus
contains the even-even (boson) core Hamiltonian Hg,
a single-particle Hamiltonian that describes the un-
paired nucleon HF, and a term that describes the in-
teraction between bosons and fermions HBF:

Higrym = Hp + Hy + Hpr. (1)

For low-energy states, the dominant components in the
boson space are the s (spin 07) and d (spin 27) bosons,
which correspond to the correlated pairs of J = 0T
and 27 pairs of valence nucleons, respectively[lg]. The
number of bosons equals the number of valence (spher-
ical open-shell) proton and neutron pairs (particle or
hole pairs). For the boson Hamiltonian Hg we employ
the standard form®: Hp = eqnig+#xQ-Q++'L-L, with
the d-boson number operator ng = de, the quadrupole
operator Q = sTd+ dT§+X[dT X d](Z), and the angu-
lar momentum operator L = v/10[d" x d|V. 4, K, &’
and x are parameters that are to be determined by
the SCMF calculation. The fermion Hamiltonian for
a single nucleon reads Hp = 26 [a;r- x a;]?, with
€; the single-particle energy of the spherical orbital j.
For the particle-core coupling H BF we use the simplest
form ™.

Hpr=> " I;;Q-[al xa;]® +

23
SN A x @]9 x[al, < d)9) O
jj/j//

ZAj [a;f de](o)ﬁd, (2)
J

where the first, second, and third terms are referred
to as the quadrupole, exchange, and monopole inter-
actions, respectively. The physical meaning of each
term is discussed in Ref. [10]. For the strength param-
eters I, A;j,, [21]
are employed:

and A; the following expressions

Ly =Tovjj (3)
AL =20 W%ﬁjj"ﬁj’j"a (4)
Aj=—+/2j+1A, (5)
where ;50 = (ujuj —v;05)Q ;0 and By = (ujvy +

vju;)Qjj7, and the matrix element of the quadrupole
operator in the single-particle basis Q;;» = (j||Y ®||5").
The factors u; and v; denote the occupation probabil-
ities of the orbit j.

As an illustrative application of the method, we
consider the case of a single nucleon coupled to an
axially-deformed nuclei, i.e., the low-energy spectra
of the isotopes *7715Eu. These nuclei were exten-
sively investigated in the earlier IBFM calculation!”!
and, therefore, one can directly compare the present
results with those obtained in a purely phenomeno-
logical approach. The corresponding even-even core
nuclei 1487154Sm present excellent examples of the
shape transition from the nearly-spherical and axially-
deformed shapes[S].

The first step is to determine the parameters for
the even-even core Hamiltonian I:IB. To this aim we
employ the procedure developed in Ref. [22]: the con-
strained self-consistent mean-field (SCMF) calculation
based on a given EDF determines the microscopic
deformation energy surface as fu[{l]ction of the polar

face is mapped onto the corresponding expectation

deformation parameters S and ~'"'; This energy sur-

value of the boson Hamiltonian in the intrinsic (co-

23] of the interacting-boson system, and

herent) state
this mapping completely determines the parameters of
Hg. Only the strength parameter «’ for the L-I term
is determined separately so that the cranking moment
of inertia in the IBM intrinsic state becomes equal to
the one obtained from the self-consistent cranking cal-
culation at the mean-field minimum!*?.

For the fermion valence space we include all the

spherical single-particle orbits in the proton major
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shell Z = 50 ~ 82: 1g7/2, 2ds5/2, 2d3/2 and 3sy o for and a separable pairing force of finite range[%]. The

positive-parity, and 1h;;,2 for negative-parity, with
single-particle energies and occupation probabilities
determined by the SCMF calculation constrained at
zero deformation. The three strength parameters of
Hgp (I, Ao and Ag) are the only parameters that are
fitted to data, separately for positive- and negative-
parity states for each nucleus.

Having determined all the parameters, the Hamil-
tonian ﬁIBFM is numerically diagonalised to yield ex-
citation spectra and electromagnetic transition rates
of a given odd-mass nucleus.

3 0Odd-mass Eu isotopes

In Fig. 1 we display triaxial quadrupole binding
energy maps of the even-even *7154Sm nuclei in the
B —~ plane (0 < v < 60°), obtained from the con-
strained self-consistent relativistic Hartree-Bogoliubov
(RHB) calculation!” based on the DD-PC1 EDF*”
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B p

02 0. 0.2- 03

energy surfaces clearly exhibit a gradual increase of
deformation of the prolate minimum with increasing
neutron number, from nearly spherical **¥Sm to well-
deformed prolate shapes at *4Sm, and the evolution
of the v-dependence of the potentials. The shape evo-
lution corresponds to the transition from the U(5) to
the SU(3) limits of the IBMP!. The energy surfaces
of 159:1528) indicate that these are transitional nuclei,
characterised by a softer potential around the equilib-
rium minimum both in the § and dirgétions, typical

In Fig. 2 we show the calculated excitation ener-

of the quantum shape phase transition

gies for the low-lying positive- (7 = +1) and negative-
parity (7 = —1) yrast states in 7" 1%°Eu isotopes as
functions of neutron number, in comparison with avail-

able experimental datal®”. The present calculation re-
produces the experimental systematics reasonably well.

The structural evolution- is characterized by the

40" 7 (deg) 0.4

0.0 0.1

02 03 04
B B

Fig. 1 (color online) Self-consistent RHB triaxial quadrupole binding energy maps of the even-even **8~154Sm isotopes
in the S—y plane (0 < y<60°). The energy difference between the neighbouring contours is 250 keV.
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(color online) Evolution of excitation energies of low-lying (a,b) positive- (m = +1) and (c¢,d) negative-parity

(= —1) yrast states as functions of neutron number in the **"~'**Eu isotopes.
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change in the spin of the ground state at a particular
nucleus®”. Indeed one sees from the figure that the
ground-state spin changes at N =90 in odd-mass Eu
isotopes for negative parity. For the positive-parity
states, the change does not occur, but still the 5/2+
level becomes minimal in energy at N = 88.

The model can also describe details of excitation
spectra and decay patterns in individual nuclei. Fig-
ure 3 displays the low-energy level scheme of the nu-
cleus 153Eu. The theoretical results are in a very good
agreement with experiment. The present results repro-
duce data on the same level of accuracy as the fully
phenomenological approach[20]. From Fig. 3 the two
positive-parity bands built on the states J™ = 5/2+
and 3/2" are assigned to the K™ = 5/2" and K™ =
3/ 27 rotational bands, respectively. The level energies
of these J(J+ 1) rotational bands exhibit the strong-
coupling AJ = 1 systematics. The positive-parity
bands based on 5/2] and 3/2] predominantly corre-
spond to the 1g;/5 and 2ds,5 proton configurations,
respectively, with significant mixing of the two
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Fig. 3 (color online) Low-energy level scheme the

isotope **Eu. Numbers along arrows are B(E2)
(thick, in color blue) and B(M1) (slanted, in color
green) values in W.u., respectively. Experimental
data are from Ref. [27].

configurations. The model also reasonably describes
the electromagnetic transition rates.

4 Applications

4.1 Signatures of shape phase transitions

We have already seen in Fig. 2 several signatures
of the shape phase transitions in odd-mass Eu nuclei,
e.g., change of the ground-state spin. Nuclear shape
phase transition is characterised by a discrete change
of order parameters as functions of the control param-
eter (nucleon number). To show such a phase transi-
tional behaviour of observables in a more vivid manner,
we consider the differential of a given quantity O for
a nucleus with mass A as its absolute value averaged
over the lowest bands i, that is,

1 n
:£Z|Oi,A_Oi,(A—2)|- (6)

i=1

For O, in this contribution we consider: B(E2), an av-
erage B(E2) for transitions between the band-head of
a given band with spin Jy and the lowest n states with
spin'Jo+AJ with AJ =1 and 2; the energy difference
E(Jv,Jo)=E(J1)—E(Jo) with E(Jo) and E(J1) (J1 =
Jo+AJ with AJ =1,2) being the energies of the band-
head and the first excited state in a band, respectively;
the energy ratio between the lowest two excited states
(with spin J1 = Jo+AJ and J2 = Jo+2AJ) in a given
band R(J2,J1,Jo) =[E(J2) — E(Jo)]/[E(J1) — E(Jo)].

Fig. 4 displays the differentials of the above quan-
tities for the odd-mass Eu nuclei. One notices that
apart from only a few exceptions, that is, 0E(J1,Jo)
for the positive-parity states in odd-mass Eu, the dif-
ferentials of the considered quantities exhibit a pro-
nounced discontinuity at the transitional nuclei either
at A = 151 or 153, where the potential becomes no-
tably soft in both 8 and v directions (see, Fig. 1). We
have shown!'?! that the differentials of the character-
istic quantities in the even-even core Sm nuclei also
exhibit abrupt changes between the nuclei with mass
number A = 150 and 152, and that these do occur in
the corresponding odd-mass systems.

4.2 Octupole correlations in odd-mass nuclei

Octupole shape is a recurrent theme of interest,
as indeed a number of new experiments are either run-
ning or being planned to measure it, e.g., in the mass
A = 220 and 144 (for a review, see Ref. [30]). The
octupole deformation is also relevant for odd-mass nu-
clei, which however, have not been so extensively stud-
ied theoretically as for the even-even nuclei. We have
extended the method to include octupole degrees of

16]

freedom in odd-mass systems[ , and analysed the role
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of octupole correlations in neutron-rich Ba isotopes in
the mass A=~ 144.
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Fig. 4 (color online) Differentials of B(E2) with AJ =1
(a-1, a-2) and AJ = 2 (b-1, b-2), excitation
energy 0E(J1,Jo) (c-1, ¢-2) and the energy ratio
O0R(J2,J1,J0) (d-1, d-2), for the odd-mass Eu
isotopes, as functions of the mass number A.

Fig. 5 depicts the axially-symmetric (S2,33) de-
formation energy surface for the nucleus ***Ba, calcu-
lated with the constrained RHB method. A minimum
with non-zero 3 deformation (8 = 0.1) is seen. The
B2— B3 RHB energy surface has been mapped onto the
sdf-IBM Hamiltonian, which has been used to describe
both positive- and negative-parity states in the consid-
ered even-even Ba nuclei. The sdf-IBFM Hamiltonian
has been constructed in a similar way to the sd-IBFM
one, but more free parameters are involved (the proce-
dure to determine the parameters for the sdf-IBFM is
described in great detail in Ref. [16]).

0.3
0.2
<

0.1

0.0 L -

-03 —-02 -0.1 00 0.1 0.2 0.3 04 05

B
Fig. 5 (color online) The B2 — 83 RHB deformation

energy surfaces for ***Ba. The energy difference
between neighbouring contours is 200 keV. Equi-
librium minimum is identified by open circle.

The excitation spectra are shown in Fig. 6. The
lowest two negative-parity bands, built on the 5/27
and 7/2] states, are characterized by the coupling of
the unpaired neutron in the 1lhg,, single-particle or-
bital to the sd boson space. The lowest positive-parity
state 9/2;r is described by the coupling of the 1i;3/5
orbital to sd-boson states. The theoretical # = +1
band built on the 7/ 2;r state is constructed by the
coupling of the 1hg/o single-neutron configuration to
states with one f-boson. The theoretical 11 /2;r level,
calculated at 705 keV, can be compared with the ex-
perimental 11/2Jr state at 670 keV[gl], which has been
suggested as a candidate for an octupole state. Non-
negligible E3 transition strength from the 7/ 2;r band
to the negative-parity ground-state band is predicted
in the present calculation.
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Fig. 6 (color online) Low-lying energy spectra for the

nucleus *°Ba. The levels for the theoretically and
experimentally proposed octupole states are shown
as thick lines.

5 Conclusion

In this contribution, we have reviewed a recently
developed method for calculating spectroscopic proper-
ties of medium-mass and heavy odd-mass nuclei. Most
of the parameters of the IBFM Hamiltonian used to de-
scribe the coupled system of the unpaired particle(s)
plus boson-core, are uniquely determined based on
the microscopic nuclear EDF framework. Only the
strength parameters of the particle-boson coupling are
specifically adjusted to data for each nucleus. As an
illustrative example, the low-energy excitation spectra
and transition rates of 147 155Eu have been analyzed,
and a very good agreement with data has been ob-
tained. Other selected results from this method have
been discussed. The microscopic approach in which
the even-even core is described in terms of bosonic de-
grees of freedom, and only the fermion degrees of free-
dom of the unpaired particle(s) are treated explicitly,
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enables an accurate, computationally feasible, and sys-
tematic description of a wealth of new data on isotopes
with odd nucleon number(s).
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