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Abstract：The analysis of the quantum phase crossover behavior in the spherical shell model mean-field plus

the geometric quadrupole-quadrupole (Q·Q) and standard pairing model within a single-j shell is reported.

Several quantities, such as low-lying excitation energies, the overlaps of excited states, ratios of some B(E2)

and electric quadrupole moments of some low-lying states as functions of the control parameter of the model

in a j=15/2 shell are calculated. The results show that there are noticeable changes in the crossover region

of the rotational-like to the pair-excitation phase transition, such as B(E2;41 → 21)/B(E2;21 → 0g) and

B(E2;42 → 21)/B(E2;21 → 0g), especially in the half-filling case. Though the low-lying excitation energies

generated from the geometric quadrupole-quadrupole interaction not satisfy the pattern of a rotational

spectrum when j is small, these energies follow the pattern of a rotational spectrum when j is sufficiently

large.
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1 Introduction

The quantum phase transition in the large-N limit

or the quantum phase crossover (QPC) in finite quan-

tum systems is of great interests in many areas of

physics
[1–2]

. In a finite quantum many-body system,

the crossover occurs when the interaction strengthes

or called control parameters reach a critical point of

different phases described by distinct types of ground

or excited states of the system
[1, 3]

. In atomic nuclei,

the quantum phase transition has been studied exten-

sively in either the interacting Boson model (IBM) or

the Bohr-Mottelson model (BMM)
[4–5]

. It is now com-

monly accepted that the three limiting cases of the

IBM correspond to three different geometric shapes of

nuclei. More interesting scenarios occur when a sys-

tem is in between two different phases, in which case

a quantum phase transition occurs at the correspond-

ing critical point with the distinct symmetry
[6–7]

, e. g.,

the critical point of the spherical to γ-unstable shape

phase transition with the E(5) symmetry
[8]
, the crit-

ical point of the spherical to axially deformed shape

phase transition with the X(5) symmetry
[9]
, and the

critical point of the prolate to oblate shape phase tran-

sition with the Z(5) symmetry
[10]

, etc., in the BMM,

which have been widely confirmed.

On the other hand, it is widely accepted that the

spherical shell model is fundamental in describing low-

lying excitation spectra of nuclei when the most im-

portant residual interactions, such as the Q ·Q and

pairing interactions, are taken into consideration
[11–14]

.

In Refs. [15–16], the Hamiltonian with the Elliott’s dy-

namic Q ·Q and the standard pairing interaction re-

stricted to a single spherical harmonic oscillator shell

was studied, which sheds light on the nature of the

QPC of the model. The analysis of the QPCs in the

shell model restricted in the SD-pair subspace was also

made
[17–18]

.

In this paper, the QPC behaviors of the shell

model mean-field plus the geometric Q·Q and the stan-

dard pairing interaction within a single-j shell will be

shown, of which the application of the model for typi-
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cal nuclei in the rotational-pairing crossover region was

provided in our recent work
[19]

.

2 The model

The Hamiltonian of the spherical shell model

mean-field plus the geometric Q ·Q and the standard

pairing interaction within a single-j shell is given by
[19]

Ĥ = ϵjn̂j−GS+S−−κQ̃ ·Q̃, (1)

where ϵj is the single-particle energy generated from

the spherical shell model, G and κ are the pairing

and Q · Q interaction strength, respectively, S+ =∑
m>0(−1)j−ma†jma†j−m (S− = (S+)

†) are pair cre-

ation (annihilation) operator, in which a†jm is the cre-

ation operator of a particle in the single-j shell, and

Q̃q = Qq/r
2
0 with r20 = ~/Mnω0 = 1.012A

1
3 fm2, in

which Mn is the mass of a nucleon, ω0 is the frequency

of the harmonic oscillator potential. In the spherical

shell model basis for a single-j shell, the geometric Qq

can be written as

Qq =
1√
5

⟨
Nl
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and

(a†j× ãj)
2
q =

∑
m1m2

⟨
jm1, jm2|2q

⟩
a†jm1

ãjm2 , (5)

in which ãjm = (−)j+maj −m, and ⟨jm1, jm2|2q⟩ is

the Clebsch-Gordan coefficient.

In order to investigate the QPC in this model, we

set G= cx and κ= c(1−x)ξ, in which c is a scale fac-

tor, ξ is a dimensionless constant, and x can be taken

a value in the closed interval [0,1]. For a given number

of particles n, up to a constant, the model Hamiltonian

is rewritten as

Ĥ ′ =−c
(
xS+S−+(1−x)ξQ̃ ·Q̃

)
. (6)

Thus, x serves as the control parameter of the model,

while the parameters ξ is chosen with 0<ξ < 1 in order

to keep the critical (or crossover) point not far from

x∼ 0.5 according to the value of j.

The Hamiltonian (6) is diagonalized in the U(2j+

1) ⊃ Sp(2j+1) ⊃ O(3) basis, of which the basis vectors

are denoted as |[1n]⟨1ν⟩αJM⟩, where n is the number

of valence particles in the single-j shell, ν is the se-

niority quantum number, J and M are the quantum

number of the total angular momentum and that of

its third component, respectively, and α is the addi-

tional quantum number needed to distinguish differ-

ent state with other quantum numbers the same be-

cause Sp(2j+1) ↓ O(3) is not branching multiplicity-

free. The branching multiplicity of J in the reduction

Sp(2j + 1) ↓ O(3) for a given ν can be obtained by

using the method shown in Refs. [19–20]. Hence, the

eigenstates of Eq. (6) are expressed as∣∣n,ζ,JM⟩
=
∑
να

C
(ζ)
ναJ

∣∣[1n]⟨1ν⟩αJM⟩
, (7)

where ζ labels the ζ-th excited state with the total

angular momentum J , and C
(ζ)
ναJ is the corresponding

expansion coefficient, namely,

Ĥ ′|n,ζ,JM⟩=E(Jζ)|n,ζ,JM⟩, (8)

where E(Jζ) is the corresponding excitation energy.

3 The QPC behaviors

In order to investigate the QPC in the model,

we take j=15/2 in the N=7 major shell as an ex-

ample, which is the largest single-j shell suitable to

describe some experimentally reachable heavy nuclei.

The present model concentrates on an ideal system, so

we set ξ=0.22 in order to keep the critical (or crossover)

point not far from x∼ 0.5 according to the value of j.

To show how the low-lying excitation spectra change

as functions of the control parameter x and the total

number of particles n, some low-lying excitation spec-

trum as functions of x for the system with the num-

ber of particles n=8 corresponding to the half-filling is

shown in Fig. 1.
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Fig. 1 (color online) Some low-lying excitation spec-

trum with j= 15
2

across the transitional region for

n=8, where x=0 corresponds to the rotation-like

phase and x=1 to the pair-excitation phase. Taken

from Ref. [19].
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It can be observed from Fig. 1 that the ratios R4/2

for x = 0 are always smaller than the corresponding

values of the typical rotational spectrum. The system

with x = 0 is called in the rotation-like phase. With

the increasing of x from 0 to 1, the system is driven

from the rotation-like phase toward the crossover point

with x∼ 0.5 because sharp change in level energy never

happens due to the fact that the number of particles is

always small and finite, and then is driven away from

the crossover point toward the pair-excitation phase.

The level pattern when x< 0.5 or > 0.5 are noticeably

different from that when x∼ 0.5. It can be clearly ob-

served from Fig. 1 that there are many level-crossings

when x< 0.5 or x> 0.5, which are typical for a quasi-

integrable system because the model in such cases is

either driven by the Q ·Q or driven by the pairing in-

teraction. The situation for x∼ 0.5, however, is quite

different, in which no level-crossing happens, but, in-

stead, there is an obvious level-repulsion for the 41 and

42 levels around x=0.5 as clearly shown in Fig. 1.

In addition, as pointed out previously, within a sin-

gle finite j shell, spectrum of the geometric quadrupole-

quadrupole interaction adopted in this work does not

follow the rotational pattern as that generated by the

Elliott’s dynamic quadrupole-quadrupole interaction,

especially in the higher J levels. In order to show the

level pattern of the geometric quadrupole-quadrupole

interaction, we diagonalize the −κQ̃ · Q̃ term in the

n=2 subspace, of which the eigen-energy E(J) for an

allowed total angular momentum J is given by

E(J)=−h0
(2j+1)2

π

⟨
j
1

2
j− 1

2

∣∣∣∣20⟩2

×

∑
J ′

(2J ′+1)

{
j j 2

J J ′ j

}2

, (9)

where h0 =κ(N+3
2 )

2. The low-lying excitation spectra

for small j cases generally are away from the rotational

pattern. When j is sufficiently large, the low-lying exci-

tation spectra gradually follow the rotational pattern.

We have calculated E(J) with J = 0,2, · · · ,10 from

j=463/2 to j=475/2, of which the results are shown

in Fig. 2.

As clearly shown in Fig. 2, for a sufficiently large

j shell, which may be regarded as a single-j approxi-

mation to the actual situation in nuclear system with

multi-j shells, the low-lying excitation spectra of the

−κQ̃ · Q̃ term indeed gradually follow the rotational

pattern. Our conclusion is that only low-lying excita-

tion spectra generated from the geometric quadrupole-

quadrupole interaction follow the pattern of a rota-

tional spectrum in a single-j shell when j is sufficiently

large.

Fig. 2 (color online) Some low-lying excitation spec-
tra with total angular momentum J =0,2, · · · ,10
generated from the −κQ̃ ·Q̃ term with n=2.

In order to reveal the crossover region more pre-

cisely, similar to the analysis
[21–22]

for the Bose sys-

tems, overlaps of the excited states of Hamiltonian (6)

for given n and J as functions of the control param-

eter x with those of the corresponding limiting cases

|⟨nJζ = 41;x= x0|nJζ = 41;x⟩| with x0 = 0 and x0 = 1

including that corresponding to different total num-

ber of particles n in the j = 15/2 shell are calculated,

of which the results for n = 4,6,8 cases are shown in

Fig. 3.

It can be seen from Fig. 3 that when n is small,
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Fig. 3 (color online)The overlaps |⟨n41;x = x0|n41;x⟩|
with x0 =0 and x0 =1 for n=4,6,8 in the j =15/2
shell. (a) The overlap |⟨n41;x=0|n41;x⟩|. (b) The
overlap |⟨n41;x = 1|n41;x⟩|. The solid, dash and
dot line represent n= 4, n= 6 and n= 8 particles,
respectively.
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the change of overlap is smooth, and becomes sharper

towards the half-filling. The position of the crossover

point differ with n but all within the x ∼ 0.4-0.55 re-

gion. A sharp change appear in |⟨n41;x = x0|n41;x⟩|
with x0 = 0 or x0 = 1 around xc = 0.44 when n = 8.

There is only a crossover region within which the over-

laps, energy ratios, and other quantities may change

noticeably.

As is well known from the analysis of the quantum

phase transitions in Bose systems
[21–22]

, some B(E2)

ratios may be sensitive to the shape phase transitions.

Several B(E2) values and ratios of the model as func-

tions of x for n =4, 6, and 8 in the j=15/2 shell are

presented in Fig. 4, which show that these quantities

undergo noticeable change within the crossover region.

In our calculation, the E2 transition operator is simply

taken as the geometric quadrupole operator defined in

Eq. (2). Fig. 4 (a) shows B(E2;41→21)/B(E2;21→0g)

gradually increases with the increasing of x when

x < 0.4 and then becomes decreasing with the in-

creasing of x when x > 0.4. On the contrary, in

Fig. 4 (b), there is a sudden increasing in the ratio

B(E2;42→21)/B(E2;21→0g) within the crossover re-

gion. From Fig. 4 one can see that its change is smooth

when n is small, and becomes sharper towards the half-

filling. With the increasing of the number of particles,
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Fig. 4 (color online) Several B(E2) ratios as functions
of x for n=4,6, and 8 particles in the j=15/2 shell.
(a) B(E2;41→21)/B(E2;21→0g) as functions of
x. (b) B(E2;42→21)/B(E2;21→0g) as functions
of x. The solid, dash and dot line represent n=4,
n=6 and n=8 particles, respectively.

there are more B(E2) values and their ratios undergo

noticeable change though other B(E2) values and ra-

tios are not provided in Fig. 4. Moreover, the crossover

region in the B(E2) ratios becomes rather narrower

when the number of particles reaches to the half-filling

when n is even. As clearly shown in Fig. 4 for the even

n cases, the crossover region becomes a point around

xc∼0.43, at which both the B(E2) values and the ra-

tios undergo a sudden change.

Besides B(E2) ratios, ratios of electric quadrupole

moments Q(Jζ) may also be used to identify the

crossover. Similar to the B(E2) ratios, there are many

quadrupole moment ratios of low-lying states may un-

dergo noticeable change within the crossover region

though only three quadrupole moment ratios of low-

lying states for n=6 as functions of x for j=15/2 are

shown in Fig. 5, which shows that these ratios undergo

drastic change around the crossover point.
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Fig. 5 (color online) Several electric quadrupole mo-
ment ratios of low-lying states for n = 6 in the
j = 15/2 shell as functions of x, where the curve
a represents Q(41)/Q(21), the curve b repre-
sents Q(42)/Q(21), and the curve c represents
Q(23)/Q(21). Taken from Ref. [19].

4 Summary

In this paper, the QPC behavior of the spherical

shell model mean-field plus the geometric quadrupole-

quadrupole and standard pairing model within a single-

j shell is analyzed in detail. Our analysis shows that

the spectrum generated by the geometric quadrupole-

quadrupole interaction does not follow the J(J+1) law,

especially in the higher lying states of the yrast band

when the number of particles and the value of j is

small, which may be due to the fact that the geomet-

ric quadrupole operator is less collective in comparison

to the Elliott’s dynamic counterpart. Only when j is

sufficiently large, the low-lying part of the spectrum

generated by the geometric quadrupole-quadrupole in-

teraction follow the J(J+1) law even when there are

only a few particles. Due to the Pauli exclusion, only
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a crossover occurs in the model because j is small and

finite. Various quantities, such as low-lying excitation

spectrum, the overlaps of the excited states with those

of the corresponding limiting cases, ratios of B(E2)

values and electric quadrupole moments of some low-

lying states, as functions of the control parameter of

the model in the j=15/2 shell are calculated. The

results show that there are noticeable changes within

the crossover region of the rotation-like to the pair-

excitation phase transition, especially in the half-filling

case. The crossover region becomes narrower with the

increasing of the number of particles toward the half-

filling, especially in the even j cases.

A chain of isotopes Sn with valence neutrons con-

fined in the 0g7/2 shell less than 8 may show the prop-

erties discussed in the present model of single-j shell.

In order to investigate the quantum phase crossover

of neutron-rich Sn isotopes, a multi-j extension of the

current model is necessary, in which other seniority

conserving interaction terms
[14, 23]

may also be con-

sidered. These extensions will be a part of our future

work.
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球形平均场加四极-四极和对力模型在单 j壳内的量子相交叉行为

李 博
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，丁小雪
2

，J. P. Draayer
3
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2. 辽宁师范大学物理与电子技术学院，辽宁 大连 116029；

3. 美国路易斯安娜州立大学物理与天文系，巴吞鲁日 70803-4001 )

摘要: 介绍了单j壳的球形平均场加几何四极-四极和标准对力模型的量子相交叉行为。在单j = 15/2的壳

内，计算了随模型控制参数变化的多个物理量如低激发能级、激发态间重叠积分、低激发态间的B(E2)比

值和电四极矩比值。结果显示，在类转动到对激发相的演化中，多个物理量在交叉区存在非常明显的变化，

如B(E2;41 → 21)/B(E2;21 → 0g)，B(E2;42 → 21)/B(E2;21 → 0g)等，并且这些变化在核子数达到半满壳时尤为显

著。此外，尽管当j较小时，由几何四极-四极相互作用得到的低激发能级不满足转动谱规律，但当j值足够大时，这

些低激发能级满足转动谱规律。

关键词: 壳模型；四极-四极相互作用；单j壳
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