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Abstract：An extension of the original interacting boson model to the multi-level case including negative

parity f- and p-bosons is made. An affine ̂SU(1,1) algebraic approach is applied to solve the multi-level

pairing problem numerically via the dual algebraic structure. The duality relation is explicitly used to

construct the number-conserving unitary and number-nonconserving quasi-spin algebra, related with the

Hamiltonian and the corresponding bases. After fitting to the experimental level energies of even-even
106−116Cd, several order parameters to signify the shape (phase) transition, such as occupation numbers of

the bosons in the ground and a few lowest excited states, the level energy staggering in the (quasi)-γ band,

are calculated to demonstrate the shape (phase) transitional behavior of these medium mass transitional

nuclei.
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1 Introduction

Quantum phase transitions (QPT) in different

systems are known to have many characteristics in

common. Numerous studies of QPT in nuclear mod-

els have been reported in recent years
[1–5]

. For sev-

eral years, great attention has been devoted to the

study of the nuclear structures as well as QPT in low-

lying ground and excited states of nuclei within the

framework of the two-level
[6–11]

, three-level
[12–15]

, and

four-level pairing
[16–24]

model in the interacting boson

model (IBM) framework. The role played by d-bosons

is easily understood since they can be thought of as

a quantization of the shape variables. The introduc-

tion of s-bosons is less obviously necessary and arose

from a study of the underlying microscopic structure

which led to an interpretation of bosons in terms of nu-

cleon pairs. Although d- and s-bosons dominate the

low-lying features of nuclei, other degrees of freedom,

such as f - and p-bosons are also necessary in order to

describe negative parity excited states.

In this talk, we show how the octupole and dipole

degrees of freedom are introduced in the IBM for nu-

clei in the vibrational to γ-unstable transitional region.

We report our recent applications of the infinite di-

mensional affine ̂SU(1,1) algebraicc approach
[25–26]

to

solve the pairing interactions among s-, d-, p-, and f -

bosons as extensions of the IBM. The nuclear shape

among which phase transitions take place is associ-

ated with the vibrational and γ-soft dynamical sym-

metries of the IBM. When p- and f -bosons are intro-

duced alongside s- and d-bosons, the space spanned by

single boson states becomes 16-dimensional. The cor-

responding dynamical group is U(16)
[27]

. We use the

Uf(7)⊗Ud(5)⊗Up(3) → SO(16) transitional descrip-

tion and introduce the related affine ̂SU(1,1) algebraic

technique, with which we calculate level energies of

even-even 106−116Cd and show signatures of the shape

(phase) transition in these nuclei.

2 The method

Although quite successful in its simplest form of

the original IBM, many aspects of nuclear structure

still could not be described with scalar and quadrupole
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bosons only. To describe these aspects, several exten-

sions have been made. The quadrupole vibration and

deformation are described in terms of s- and d-bosons

(with angular momentum l=0 and l=2), while nega-

tive parity states may be described by introducing f -

and p-bosons (l=3 and l=1). In the IBM framework,

the boson quasi-spin algebra was first introduced in

Ref. [28]. Accordingly, the scalar pair creation operator

S+(l), pair annihilation operator S−(l), and number-

conserving operator S0(l) generate the SU l(1,1) alge-

bra, which is dual to the Sp(4l+2,R) ⊃ U(2l+1) ⊃
SO(2l+1)⊃SO(3) for the bosonic systems.

It is known that pairing plays a prominent role in

understanding the nuclear many-body systems
[29–32]

.

The concept of pairing interaction was first reported

by Racah within the context of a seniority coupling

scheme
[33]

. The bosonic pairing model can be solved

exactly by the Bethe ansatz method which usually

depends on a set of dimensionless parameters. The

Bethe ansatz method is the process of diagonalizing a

many-body Hamiltonian starting from a suitably con-

structed ansatz state and eventually determining the

exact eigenstates in an explicit way
[25–26]

.

In order to analyze the structural changes between

the spherical and γ-unstable shapes via Bethe ansatz

method, similar to the procedure shown in Refs. [25–

26], we introduce the SU l(1,1) generators denoted as

S+(l)=
1

2
l† · l†, S−(l)=

1

2
l̃ · l̃,

S0(l)=
1

2
(l† · l̃+ 2l+1

2
)=

1

2
(nl+

2l+1

2
), (1)

where l† is the creation operator of l-bosons, l̃ν =

(−1)ν l−ν , and nl is the l-boson number operator,

which are the pair creation operator S+(l), pair an-

nihilation operator S−(l), and number-conserving op-

erator S0(l), with l=0 for s-boson, l=1 for p-boson,

l=2 for d-boson, and l=3 for f -boson. The structure

of the dual algebraic relations including the generators

of the related unitary and quasi-spin algebras and the

Casimir operators are presented in Ref. [10]. In the

dual reductive pairs, duality relationships are often de-

scribed in terms of a pair of two algebras (groups) that

are mutually commutative with each other.

Similar to Refs. [25–26], we can introduce the

affine ̂SUspdf (1,1) algebra generated by

S±
n =

∑
l

c2n+1
l S±(l), S0

n =
∑
l

c2nl S0(l),

with n= 0,±1,±2, · · · , where c0 = cs, c1 = cp, c2 = cd,

and c3 = cf are real parameters. Then, the schematic

Hamiltonian suitable to describe the vibrational to γ-

unstable shape (phase) transition with s-, p-, d-, and

f -boson degrees of freedom is expressed as

Ĥ =gS+
0 S

−
0 +αS0

1 +βĈ2(SOf(7))+

γĈ2(SOd(5))+δ(Ĉ2(SOpdf(3))), (2)

of which the first two terms S+
0 S

−
0 and S0

1 are related

to the SU(1,1) pairing interactions among the bosons,

while other Casimir operators are already diagonal un-

der the SOf(7)⊗SOd(5)⊗SOp(3) ⊃ SOpdf(3) basis.

The dynamical group chain related to the Hamiltonian

(2) is

Uspdf (16)⊃

{
SOspdf (16)

Uf(7)⊗Ud(5)⊗Up(3)⊗Us(1)

}
⊃

SOf(7)⊗SOd(5)⊗SOp(3)⊃
SOf(3)⊗SOd(3)⊗SOp(3)⊃SOpdf (3). (3)

It can be easily seen that Eq. (2) is diagonal un-

der the Uspdf (16) ⊃ Uf(7)⊗Ud(5)⊗Up(3)⊗Us(1) ⊃
SOf(7) ⊗ SOd(5) ⊗ SOp(3) ⊃ SOpdf (3) basis when

g = 0, while it is diagonal under the Uspdf (16) ⊃
SOspdf (16) ⊃ SOf(7)⊗ SOd(5)⊗ SOp(3) ⊃ SOpdf (3)

basis when cs = cd = cp = cf for arbitrary value of g. In

the following, cd =1 is fixed, while cs, cp, and cf vary

in the closed interval [0,1]. Therefore, (2) describes

nuclei within the Uf(7)⊗Ud(5)⊗Up(3)←→Ospdf (16)

vibration to γ-unstable transitional region with inclu-

sion of dipole and octupole degrees of freedom.

According to the Bethe ansatz method, up to a

normalization constant, the eigenstates of (2) may be

expressed in terms of the Uspdf (16)⊃ Uf(7)⊗Ud(5)⊗
Up(3)⊗Us(1)⊃ SOf(7)⊗SOd(5)⊗SOp(3)⊃ SOpdf (3)

vectors with the highest weight of SOf(7)⊗SOd(5)⊗
SOp(3) as

|k;νsνpνdνfn∆LM⟩=
k∏

ρ=1

S+(xρ)|νsνpνdνfn∆LM⟩,

(4)

where νs, νp, νd, and νf are seniority number of s-, p-,

d-, and f -bosons, respectively, n∆ is a set of additional

quantum numbers needed in the reduction, and L is

the total angular momentum quantum number of the

spdf -boson system, the total number of bosons is given

by N =2k+
∑

l νl, and

S+(x)=
∑
l

cl
1−c2l x

S+(l), (5)

in which x is the spectral parameter. The eigen-

energies and the related k-variables {x1, · · · , ck} in

Eq. (4) are determined by the corresponding Bethe

ansatz equations as shown, for example, in Refs. [6, 31].
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3 Theoretical results

The medium mass nuclei are typical examples

of transitional class C nuclei. Nuclei in this region

have transitional characteristics intermediate between

spherical and γ-unstable shapes
[12, 25, 32]

. Very re-

cently, these regions were also studied in the general-

ized collective
[34]

and Hartree-Fock-Bogoliubov
[35–37]

models. In Ref. [38] the even-even Cd isotopes were

considered within the framework of the two-, three-,

and four-level bosonic pairing models with the aim of

identifying states having a quadrupole-octupole char-

acters.

As examples of the present model application,

level energies and some effective order parameters in

signifying the QPT in 106−116Cd were calculated in

the present model. In our calculation, we take cd = 1,

while cs = cp = cf = c, which varies within in closed

interval c ∈ [0,1]. The parameters of the Hamiltonian

(2) are obtained from the least square fit to the ex-

perimentally determined level energies of these nuclei.

Also, since the IBM is designed for low-lying states

with energies almost less than 3.5 MeV, level energies

higher than 3.5 MeV are not considered in our fits. The

calculated level energies from the model along with the

experimental ones are shown in Fig. 1. In order to re-

duce parameters, we mainly concerned with the overall

fitting quality with as few parameters as possible. For

example, the parameters g is fixed for all nuclei fitted,

and other parameters are expressed as a function of

total number of bosons, which are explicitly shown in

the caption of Fig. 1. Once the model parameters are

determined by the energy spectra as shown in the cap-

tion of Fig. 1, electromagnetic transition rates, such

as B(E2), B(E3), and B(E1), may also be calculated,

for example, as done so in the same model for Pd iso-

topes shown in Ref. [6]. The fitting quality of B(E2)

values of even-even 106−116Cd is similar to that of the

sd-IBM shown previously
[25]

.

Fig. 1 (color online) Level energies of even-even 106−116Cd, where the experimental data (a) are taken from Refs.
[39–44], while the parameters used in the spdf-IBM fits (b) are g = 1 keV, α = 1000 keV, β = 24e−0.8N keV,
γ = 53e−0.51N keV, and δ = 78e−0.14N keV, in which N is the total number of bosons of the corresponding
nucleus, the parameter c=0.43, 0.42, 0.55, 0.52, 0.50, and 0.38, respectively, were used for even-even 106−116Cd
in the fitting.

It is well known that the ground-state occupation

number of d-bosons is an effective order parameter to

signify the shape (phase) transitions in the IBM. The

occupation number of d-, p-, and f -boson for a given

state ψ defined by

⟨n̂l⟩=
⟨ψ|n̂l|ψ⟩

N
(6)

as functions of the control parameter cs and cp may

be calculated to show the phase transitional behavior,

where |ψ⟩ is the ground state or excited state of the

model determined according to the eigenstate shown

in EQ. (4).

As examples, ⟨n̂d⟩ and ⟨n̂p⟩ for the ground state

as functions of the control parameters cs and cp are

shown in Fig. 2, for which the other parameters were

chosen according to the fits to the level energies of
114Cd shown in Fig. 1, while cd = 1 and cf = 0.9 are

taken in the plots. As clearly shown in Fig. 2, that the

control parameter cs affects the d-boson occupation

number significantly, while ⟨n̂d⟩ is almost unaffected

by the control parameter cp. The obvious sudden de-

cease in ⟨n̂d⟩ with the increasing of cs can be observed

around cs∼ 0.5. Moreover, both cs and cp affect the p-

boson occupation number as shown in the lower panel

of Fig. 2. It can be inferred from Fig. 2 that both the

d-boson and p-boson occupation number seem more

sensitive to the control parameter cs.

In addition, the variations of energy spectra may

also be taken as a signature of the shape (phase). In
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Fig. 2 (color online)The d-boson (a) and p-boson (b) occupation numbers of a few low-lying states as functions of
the control parameters cp and cs.

the past a few years, there has been a growing interest

in the staggering pattern as a key signature of the γ-

softness or triaxial shape (phase)
[45–46]

. In the present

work, we employ the three-term nearest neighbor level-

energy difference within the (quasi)-γ band defined by

S(L)=
[E(L)γ−E(L−1)γ ]− [E(L−1)γ−E(L−2)γ ]

E(2+1 )
,

(7)

where γ is referred to the (quasi)-γ band. The stagger-

ing in S(L) with L is a main character of the γ-softness,

which occurs, for example, in the critical point nuclei
112,114Cd. Fig. 3 shows that the staggering pattern in
114Cd can indeed be reproduced by the sdpf -IBM with

both cp ̸=0 and cp =0, of which the results are denoted

as spdf and sdf , respectively.

Fig. 3 (color online) Staggering pattern S(L) for
114Cd, where the experimental data are taken
from Ref. [43].

4 Summary and conclusion

In this contribution, exact solutions of the four-

level pairing model with inclusion of f - and p-bosons

are used to investigate the shape (phase) transitional

behavior of nuclei within the spherical to γ-unstable

transitional region. Low-lying level energies with both

positive and negative parity, the occupation number

of bosons, and nearest neighbor level-energy difference

within the (quasi)-γ band in even-even 106−116Cd were

calculated. It can be observed that the fitting quality

of this model to the lower part of the energy spectra

of these nuclei are quite good, and the staggering pat-

tern in the (quasi)-γ band of Cd is well reproduced.

As far as the occupation numbers of the bosons are

concerned, it seems that both the d- and p-boson oc-

cupation numbers can be taken as effective order pa-

rameters to signify the shape (phase) transition within

the vibrational to γ-unstable transitional region. It

should be pointed out that other quantities, such as

energy ratios, electric quadrupole, octupole, and mag-

netic dipole transitions, etc. should also be analyzed

in order to get a better understanding of the (bosonic)

pairing effect to the shape (phase) transition based on

the dual algebraic structure of the model.
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摘要: 本工作将相互作用玻色子模型推广为包含 f -和 p-玻色子的情形。利用仿射型 ̂SU(1,1)代数方法，通过对偶

代数结构数值计算了多分量玻色型对力问题。利用对偶关系解析构建了与哈密顿量及其基底相联系的，由幺正的粒

子数守恒和非粒子数守恒算符构成的准旋代数。在经该模型对106−116Cd偶偶核素实验能谱拟合的基础上，计算了

基态和低激发态中各种玻色子占有率，准 γ带中相邻能级摇摆等几个能特征该区域核素形状相变的序参量。从而展

示了这些中重质量核从振动到 γ-不稳定运动的形状相变行为。
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