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Abstract：In this paper we give a short review of the Method of Multiple of Internal Reflections (MIR

method), which is accepted as the more accurate and rich in quantum description of nuclear reactions

today. For a capture of the α particles by nuclei our approach gives (1) new parameters of the α–nucleus

potential and (2) new fusion probabilities. We demonstrate that a fully quantum description of this

process provided by the MIR method, and inclusion of probabilities of fusion into formalism allow to

essentially increase agreement between theory and experimental data. In particular, our method found

new parametrization and fusion probabilities and decreased the error by 41.72 times for α+40 Ca and

34.06 times for α+44Ca in a description of experimental data in comparison with existing results. Based

on our proposed fusion probability formula, we explain the difference between experimental cross-sections

for α+40Ca and α+44Ca, which is connected with the theory of coexistence of the spherical and deformed

shapes in the ground state for nuclei near the neutron magic shell N =20. To obtain deeper insight into

the physics of nuclei with the new discovered magic number N = 26, we predict new cross-section of

α+46Ca for further experimental confirmation.
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1 Introduction

Our understanding about nuclear interactions is

based on experimental information about nuclear reac-

tions. Today, semiclassical methods are very popular

in quantum description of these reactions (decays of

nuclei with emission of protons, α particles or more

heavy fragments, elastic and inelastic scattering, fis-

sion, synthesis of superheavy nuclei, capture of α par-

ticles or other fragments by nuclei, etc.) and analy-

sis
[1]
. However, practically, methods more accurate

than the semiclassical approach of the first order [i.e.

Wentzel - Kramers - Brillouin (WKB) approximation]

are never used in calculations. For example, theoreti-

cal estimations of half-lives of the α decay of more than

340 nuclei (and more than 1240 predicted half-lives, see

Ref. [2]) based on such semiclassical approaches form

a basis of existed nuclear databases
[3, 4]

.

However, a region of applicability of WKB-

approximation (in determination of wave functions)

does not include internal region of nucleus which is

involved to the studied reaction. As a result, internal

structure of nucleus is hidden for quantum analysis,

if to use such approximations. By such a reason, the

semiclassical wave functions, obtained after extrapola-

tion into nuclear region with small distances, are essen-

tially different from the wave functions obtained using

methods of quantum mechanics. Also, in estimation

of half-lives of the α decay (and cross-sections of in-

verse processes), the WKB-approximation neglects a

role of initial (final) conditions in determination of

the wave function describing nuclear process (that ex-

cludes a possibility to study dynamics). Perturbative

approaches inside such space nuclear regions cannot be

applied also. All such reasons cause interest in devel-

opments of the accurate method of quantum mechan-

ics beyond the semiclassical approximations above. It

turns out that role of quantum corrections to the semi-

classical wave functions (obtained via methods of quan-

tum mechanics) in nuclear tasks is more essential than
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inclusion of nuclear deformations, different terms in

construction of nuclear potentials.

In this paper we review a Method of Multiple In-

ternal Reflections (MIR method, see Refs. [5–8]), ana-

lyze its peculiarities in a task of capture of the α par-

ticles by nuclei. We show that (1) the fully quantum

description of the α-capture process, and (2) inclusion

of probabilities of fusion allows to essentially increase

agreement between theory and experiment.

2 Method of multiple internal reflec-
tions

We shall analyze the Method of multiple internal

reflections in the task of capture of the α-particle by

the nucleus in a spherically symmetric scenario∗. To

apply the idea of multiple internal reflections to study

packet tunneling through complicated realistic barri-

ers, let us consider the radial barrier of an arbitrary

shape, which has successfully been approximated by a

sufficiently large number N of rectangular steps:

V (r)=


V1 at rmin<r6 r1 (region 1),

. . . . . . . . .

VN at rN−1 6 r6 rmax (region N),

(1)

where Vj are constants (j = 1 . . .N)†. Let us denote

the first region with a left boundary at point rmin (we

denote it also as rcapture), and we shall assume that

the capture of the α-particle by the nucleus in this

region occurs after its tunneling through the barrier.

We shall be interested in solutions for the above bar-

rier energies, while the solution for tunneling could be

subsequently obtained by changing iξi → ki. A general

solution of the wave function (up to its normalization)

has the following form:

ψ(r,θ,φ)=
χ(r)

r
Ylm(θ,φ), χ(r)=


α1 e

ik1r+β1 e
−ik1r, at rmin<r6 r1 (region 1) ,

. . . . . . . . .

αN−1 e
ikN−1r+βN−1 e

−ikN−1r, at rN−2 6 r6 rN−1 (region N−1) ,

e−ikNr+ARe
ikNr, atrN−1 6 r6 rmax (region N) ,

(2)

where αj and βj are unknown amplitudes, AT and
AR are unknown amplitudes of transition and reflec-
tion, Ylm(θ,φ) is the spherical function, and kj =

1
~

√
2m(Ẽ−Vj) are complex wave numbers. We have

fixed the normalization so that the modulus of am-
plitude of the starting wave e−ikNr equals unity. We
shall search a solution to this problem by the multiple
internal reflections approach.

According to the multiple internal reflections
method, the scattering of a particle on the barrier
is sequentially considered by steps of propagation of
the wave packet relative to each boundary of the bar-
rier (the idea of this approach can be understood most
clearly in the problem of tunneling through the sim-
plest rectangular barrier, see Refs. [6, 7], where one
can find proof of this fully quantum exactly solvable
method and analyze its properties). Each step in such
a consideration of packet propagation is similar to one
of the first independent 2N−1 steps. From the analysis
of these steps, we find recurrent relations for the cal-

culation of the unknown amplitudes A
(n)
T , A

(n)
R , α

(n)
j

and β
(n)
j for an arbitrary step with number n (here,

index j corresponds to the number of region Vj , and
the logic of the definition of these amplitudes can be
found in Ref. [8]). In the summation of these relations
from each step, we impose the continuity condition for
the full (summarized) wave function and its derivative
relative to the corresponding boundary.

According to the analysis of waves propagating in
a region with an arbitrary number j on the arbitrary
step, each wave can be represented as a multiplication
of the exponential factor e±ikj r and constant ampli-
tude. In practical calculations, the difficulty consists in
the determination of these unknown amplitudes. How-
ever, to make such calculations as easy as possible for
an arbitrary step, one can rewrite the amplitude of the
wave that has transmitted through the boundary with
number j as the product of the amplitude of the corre-
sponding wave incident on this boundary and the new
factor T±

j (i. e., the amplitude of transition through
the boundary with number j). The bottom index in-
dicates the number of the boundary, and the upper
sign “+” or “−” is the direction of the incident wave
to the right or left, respectively. We associate the am-
plitude of the reflected wave from the boundary with

∗The role of nuclear deformations in the determination of the fusion probabilities in the α-capture task is analyzed in Ref. [5]
†We used this approximation for barriers of the proton and α-decay for the number of nuclei, where the width of each step is equal

to 0.01 fm, and we demonstrated the stability of the calculations of all amplitudes of the wave function and penetrability[8]. We thus

have effective tools for a detailed study of the quantum processes of tunneling and penetrability.
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number j with the amplitude of the wave incident on
this boundary via new factors R±

j . The coefficients

T±
1 , T±

2 , T±
3 . . . and R±

1 , R±
2 , R±

3 . . . can be found from

the recurrence relations shown above
[8]
. We calculate

T±
1 , T±

2 . . .T±
N−1 and R±

1 , R±
2 . . .R±

N−1 as

T+
j =

2kj
kj+kj+1

ei(kj−kj+1)rj ,

T−
j =

2kj+1

kj+kj+1
ei(kj−kj+1)rj ,

R+
j =

kj−kj+1

kj+kj+1
e2ikjrj ,

R−
j =

kj+1−kj
kj+kj+1

e−2ikj+1rj . (3)

Now, we consider the wave propagating in region
with number j, which is incident from the right on
the potential barrier with the right boundary at point
rj−1 (and left boundary at point r1). Let us find
the wave reflected from this complicated barrier. This
wave should combine all waves formed as a result of
multiple internal reflections and propagations relative
boundaries r1 . . . rj−1 and leave such a barrier. We
define the reflection amplitude R̃+

j−1 of such a summa-
rized wave as

R̃+
j−1 =R

+
j−1+T

+
j−1R̃

+
j T

−
j−1

(
1+

+∞∑
m=1

(R̃+
j R

−
j−1)

m
)

=R+
j−1+

T+
j−1R̃

+
j T

−
j−1

1−R̃+
j R

−
j−1

. (4)

Correspondingly, we calculate

R̃−
j+1 =R

−
j+1+T

−
j+1R̃

−
j T

+
j+1

(
1+

+∞∑
m=1

(R+
j+1R̃

−
j )m

)
=R−

j+1+
T−
j+1R̃

−
j T

+
j+1

1−R+
j+1R̃

−
j

,

T̃+
j+1 =T̃

+
j T

+
j+1

(
1+

+∞∑
m=1

(R+
j+1R̃

−
j )m

)
=

T̃+
j T

+
j+1

1−R+
j+1R̃

−
j

,

T̃−
j−1 =T̃

−
j T

−
j−1

(
1+

+∞∑
m=1

(R−
j−1R̃

+
j )

m
)

=
T̃−
j T

−
j−1

1−R−
j−1R̃

+
j

. (5)

In such a summation, we have recurrent relations,
which connect all amplitudes. We now choose the fol-
lowing values

R̃+
N−1 =R

+
N−1 , R̃

−
1 =R−

1 ,

T̃+
1 =T+

1 , T̃−
N−1 =T−

N−1 , (6)

as our starting point and consequently calculate all am-
plitudes R̃+

N−2 . . . R̃+
1 , R̃

−
2 . . . R̃−

N−1 and T̃+
2 . . . T̃+

N−1.
We find the coefficients αj and βj :

αj =

+∞∑
n=1

α
(n)
j = T̃+

j−1

(
1+

+∞∑
m=1

(R+
j R̃

−
j−1)

m
)

=
T̃+
j−1

1−R+
j R̃

−
j−1

=
T̃+
j

T+
j

,

βj =αj ·R+
j , (7)

the amplitudes AT and AR of transition and reflection
concerning the barrier, and the corresponding coeffi-
cients of penetrability TMIR

‡ and reflection RMIR:

AT =

+∞∑
n=1

A
(n)
T = T̃+

1 , AR =

+∞∑
n=1

A
(n)
R = R̃+

N−1 ,

TMIR ≡ kN
k1

∣∣AT

∣∣2 , RMIR ≡
∣∣AR

∣∣2 . (8)

We check the property

TMIR+RMIR =1 , (9)

which indicates whether the MIR method gives the
proper solutions for the wave function (we obtain co-
incident amplitudes of the wave function calculated
by MIR approach, with corresponding amplitudes ob-
tained in the standard approach of quantum mechanics
up to the first 15 digits). This is an important test con-
firming the reliability of the MIR method. So, we have
obtained the full coincidence between the solutions for
all amplitudes obtained by the MIR approach and the
standard approach of quantum mechanics.

The cross-section of capture that includes the fu-

sion of the α-particles with nuclei can be defined as
[9]

σcapture(E)=
π~2

2mẼ

lmax∑
l=0

(2l+1)TlPl , (10)

where E is the kinetic energy of the α-particle incident
on the nucleus in the laboratory frame, Ẽ is the kinetic
energy of the relative motion of the α-particle of the
nucleus in the center-of-mass frame (we use E ≃ Ẽ),
m is the reduced mass of the α-particle and nucleus,
Pl is the probability for fusion of the α-particle and
nucleus, and Tl is the penetrability of the barrier. In
the WKB approach, this coefficient is defined as

TWKB(Ẽ)= exp

{
−2

∫R3

R2

√
2m

~2
(
Ẽ−V (r)

)
dr

}
,

(11)

‡We shall analyze the penetrabilities and cross-sections obtained by the multiple internal reflections method and WKB method.

To distinguish the calculated results, we shall add abbreviation “MIR” to the “multiple internal reflections method” and WKB to the

WKB approach.
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where R2 and R3 are the turning points determining
the tunneling region.

3 Results

The cross-sections for α+44Ca calculated by the

MIR and WKB approaches and experimental data
[9]

are presented in Fig. 1(a).
The MIR calculations with the included fusion

probabilities found by the minimization method are
added to this figure. One can see that the WKB ap-
proach gives higher values for the cross-section in com-
parison with the calculations from the MIR approach
at lmax = 10 ∼ 15. We conclude that the WKB ap-
proach gives reduced estimations for the fusion prob-
abilities in comparison with the MIR approach. In
Ref. [9] the effect of anomalous large-angle scattering
(ALAS) was discussed, which was explained by the
sharp angular momentum cut-off approach at some
critical value of lmax (see Eqs. (1)∼ (2) in that paper).
This case corresponds to calculations by the MIR ap-

proach at different values of Lmax (where all fusion
probabilities are equal to unity at l 6 lmax). Here,
curve 5 for lmax = 10 in Fig. 1(a) (and curve 6 for
lmax = 12) is clearly better at describing the experi-
mental data than curve 7 for lmax = 15 (which nearly
coincides with subsequent calculations for higher lmax).
However, all these curves are far from the experimen-
tal data in comparison with curve 10, which includes
the fusion probabilities obtained by the minimization
method. Thus, the sharp angular momentum cutoff
approach provides very restricted description of the
experimental data for α+44Ca, while curve 10 is more
successful. This result indicates that the dependence
of the fusion probabilities on the angular momentum
is more complicated and requires more careful study.
The fusion probabilities obtained in our calculation of
curve 10 are presented in Fig. 1(b). Our fusion prob-
abilities are extracted by analyzing the experimental
data inside the whole energy region, while Eberhard

et al.
[9]

used only one fixed energy at E=25 MeV for
analysis (and fusion probabilities are fixed to unity).

Fig. 1 (color online) Panel a: The capture cross-sections of the α-particle by the 44Ca nucleus obtained by the MIR
method and WKB approach (parameters of calculations: 10 000 intervals at rmax = 70 fm, parametrization from

Ref. [10]). Here, the data labeled 1 are the experimental data extracted from
[9]
, dashed blue line 2 is the

cross-section at lmax =0 short dotted red line 3 is the cross-section at lmax =1, short dash-dotted purple line 4 is
the cross-section at lmax =5, dash double-dotted orange line 5 is the cross-section at lmax =10, dashed dark blue
line 6 is the cross-section at lmax = 12, dash dotted green line 7 is the cross-section at lmax = 15, solid brown line
8 is the cross-section at lmax = 20, dashed dark yellow line 9 is the normalized cross-section at lmax = 17, solid
blue line 10 is the cross-section at lmax = 17, and dashed dark cyan line 11 is the cross-section at lmax = 17. The
penetrabilities are calculated by the MIR method for lines 2∼ 7 and 9∼ 11, and by the WKB approach for line
8. Lines 10 ∼ 11 are obtained with the included fusion probabilities, and lines 2 ∼ 9 are obtained without the
fusion probabilities. One can see that line 10, obtained after inclusion of the fusion probabilities, describes the
experimental data with good accuracy. For line 11, the fusion probabilities are obtained by our formulas (21)–(27)
in Ref. [5]). Panel b: The fusion probability for the capture of the α-particle by the 44Ca nucleus obtained
by the MIR approach (parameters of calculations: 10000 intervals at rmax =70 fm, parametrization from Ref. [10]).

An important question addressed to applicability
of the MIR approach is how much convergent solutions
this method gives. In order to analyze this question,
we calculate the penetrability TMIR of the potential re-
gion (with the fixed internal boundary rmin and the ex-
ternal boundary rmax) with the barrier in dependence
of number of intervals N . Results of such calculations
for the capture reaction α+44 Ca at l = 0 at a fixed

energy of the α particle are given in Fig. 2. For anal-
ysis, we use a difference between two closest values of
the penetrability, Y (N)=TMIR(N−1)−TMIR(N), ob-
tained at close numbers of intervals (used in vertical
axis in that figure). One can see that at increasing
number of intervals this difference decreases from 0.5
up to 10−10! This means that at 100 000 intervals we
obtain stable value for the penetrability where only 10
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digit can be varied (and first 9 digits are stable). For
each data, the reflection coefficient RMIR is calculated
independently, and a test is fulfilled (with accuracy of
about

∣∣|TMIR+RMIR|−1
∣∣< 10−15). This information

characterizes accuracy of the MIR method. Of course,
a famous Numerov’ approach (popular in numeric cal-
culations) cannot allow to reach such an accuracy.

Fig. 2 (color online)The error Y = |TMIR(N) −
TMIR(N − 1)| in calculations of the penetrability
TMIR(N) by the MIR method for the potential
with the barrier with the internal boundary rmin

and the external boundary rmax in dependence
on number of intervals N for the capture of
α+44 Ca at the incident energy of the α particle
of 5 MeV at l = 0 (parameters of calculations:
maximal number of radial intervals is N = 100000,
we obtained 500 data-points for curve; we fix
boundaries as rmin = 0.1 fm and rmax = 70 fm
for all calculations in this figure; a maximum of
the barrier is 6.16 MeV, so we have tunneling
at the studied energy of the α particle). Test∣∣|TMIR+RMIR|−1

∣∣< 10−15 is fulfilled for all data-
points (where RMIR is calculated independently by
the MIR approach).

In order to describe the fusion in the studied α-
capture reaction, we introduced a new formula for
probability of complete fusion (for nuclei at close pro-
ton shells, see Ref. [5])

pfus(L)=1−p1(L)−p2(L) ,

p1(L)=
c1

1+e(L−c2)/c3
,

p2(L)=f2(L) ·
∑
n=1

e
−
(L−n ·∆)2

c4n , (12)

where f2(L)= 1−e−c5·(L−c6), ∆= a ·(N−Nmagic)+b,
and a= 2.31, b= 4.05, c1 = 1, c2 = 4.2, c3 = 0.5, c4n =
1, c5 = 0.25, c6 = 2.5. Here, N is number of neutrons
of the studied nucleus, and Nmagic is the closest magic
neutron number, where Nmagic 6N (i. e. Nmagic =20
for 40Ca and 44Ca). As we shown in Ref. [5], this for-
mula provides different description of the fusion in the
reactions for the α-capture by the 40Ca and 44Ca nu-
clei (we suppose this difference should be connected
with the structure of the nucleus, which can be ex-
plained on the basis of the closure of nuclear shells).

This aspect allows us to explain difference between the
experimental cross-sections for capture by the 40Ca
and 44Ca nuclei. We represent this result, our calcula-
tions and the corresponding existed experimental data
in Fig. 3.

Fig. 3 (color online)The cross-sections calculated by
the predicted formulas for the fusion probabilities
for capture of the α-particle by the 40Ca (see
blue solid line 1), 44Ca (see green dashed line 2)
and 46Ca (see orange dash-dotted line 3) nuclei
obtained by the MIR method (parameters of
calculations: 10 000 intervals at rmax = 70 fm).
Here, the data labeled 4 and 5 are the experimental
data for 40Ca and 44Ca extracted from Ref. [9].

In order to reinforce future investigations of fu-
sion in such a type of reactions, on the basis of our
formula (12) we provide also our prediction for the
calculated cross-section for the α-capture by the 46Ca
nucleus (see orange line 3 in Fig. 3), which has never
been measured. We choose the 46Ca nucleus for such
future measurements on the basis of the following mo-
tivation. Last years there are intensive research in un-
derstanding of the coexistence of the two shapes for
the nuclei near the shells at N =20 and N =28, which
lead to a reconsideration of main positions of the nu-
clear shell model and to the discovery of new magic

numbers
[11]

. A review of this topic
[11]

gives interest-
ing indications about the new neutron magic numbers
at N =16 and N =26 and the properties of such nuclei
(while the standard theory gives us only seven exper-
imentally known neutron numbers at 2, 8, 20, 28, 50,
82, 126). So, it could be interesting to propose to inves-
tigate experimentally the fusion process at the capture
of the α-particle by the 46Ca nucleus. Such informa-
tion could provide new insight into our understanding
of physics of nuclei with such a neutron magic shell
(and fusion for these nuclei).

4 Conclusions

In this paper we reviewed the Method of Multiple
of Internal Reflections in quantum analysis of nuclear
reactions. On example of capture of the α particle by
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the 44Ca nucleus, we demonstrated that a fully quan-
tum description of this process provided by the MIR
method, and inclusion of probabilities of fusion into for-
malism allow to essentially increase agreement between
theory and experimental data [this method found own
parametrization, fusion probabilities and decreased er-
ror by 34.06 times in description of experimental data
in comparison with other approaches (here we consider
the maximally accurate WKB-calculations without the
included probabilities of fusion, see line 8 in Fig. 1)].
In finishing, we add Fig. 2 where we show convergence
of our calculations of the penetrability at increasing
of number N of intervals for α+44Ca at the incident
energy of the α particle of 5 MeV at l=0. In particu-
lar, one can see in this figure that the firth 9 digits in
the calculated penetrability become stable at maximal
chosen number of intervals of 100 000 (while at N =50
the second digit of the penetrability is changed). We
provide our formula (12) of the fusion probabilities for
the α-capture. On its basis we explain the differences
between the cross-sections for α+40Ca and α+44Ca (see
our calculated spectra given in Fig. 3 by blue solid line
1 and green dashed line 2 and experimental data 4 and
5 for these nuclei). To obtain deeper insight into the
physics of nuclei with the new magic number N = 26,
we predict new cross-section of α+46Ca for further ex-
perimental confirmation (see orange dash-dotted line

3 in Fig. 3).
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核反应中的多重内部反射方法研究

张鹏鸣
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( 1. 中国科学院近代物理研究所，兰州 730000；
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摘要: 讨论了量子多重内部反射方法 (MIR方法)，这是一种研究核反应的更准确的量子力学方法。对于一个原子

核俘获α粒子的过程，MIR方法能够给出 (1) α-核势的新参数；(2) 新的熔合几率。基于MIR方法我们给出了这类

过程的完整量子力学描述，考虑熔合几率后MIR方法能够显著地提高实验与理论的吻合度。具体研究了α+40Ca

和α+44Ca两类反应，给出了新的核势参数核和熔合几率。对于第一个反应理论计算值与实验的偏离比其他计算

结果减少了 41.72倍，对于第二个反应减少了 34.06倍。进一步，基于本工作熔合几率公式，给出了两类反应截面

不同的原因，这是与中子幻数N = 20附近的原子核基态的球形构型和形变构型共存导致的。为了更好地理解幻

数N =26附近原子核的性质，预言了α+46Ca的反应截面。

关键词: α粒子俘获；隧穿效应；多重内部反射方法；熔合几率；透射系数与反射系数；角动量截断；α衰变
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