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Abstract：Nuclear matrix element in double beta decay under the closure approximation is outlined,

in which neutrino potential for neutrinoless double beta decay is studied with focusing on its statistical

property. It is shown from the analysis that Fermi and Gamow-Teller parts provide almost the same

positive values with the Fermi part slightly larger than the Gamow-Teller part in general, while the

tensor part includes small but non-negligible positive and negative values. Positive correlation of the

values between Fermi, Gamow-Teller, and tensor parts has been clarified. The statistics provides a gross

view of understanding amplitude of constitutional components of the nuclear matrix element.
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1 Introduction

Observation of neutrinoless double beta decay is

associated with important physics, e.g.,

• existence of Majorana particle,

• breaking of leptonic number conservation.

In this sense neutrinoless double-beta decay is intrigu-

ing enough to bring about an example exhibiting the

physics beyond the standard model of elementary par-

ticle physics. Among several topics as for the double

beta decay, it plays a role in

• quantitative determination of neutrino mass,

where it is worth noting that neutrino is treated as

massless particle in the standard model.

There is a relation between the half life of neu-

trinoless double-beta decay and the effective neutrino

mass (mν):

[T
1/2
0ν ]−1 =G|M0ν |2

(
mν

me

)2
, (1)

where G is the phase space factor (its value is obtained

rather precisely), me is the electron mass (its value is

also precisely obtained), andM0ν is the nuclear matrix

element (NME, for short). In order to determine the

neutrino mass, it is necessary to calculate M0ν very

precisely. Since the detail information on initial and fi-

nal states (i.e., quantum level structure of these states)

is necessary for the calculation of NMEs, it is impos-

sible to have reliable NME without knowing nuclear

structures. The impact of precise NME calculations

is expected to be large enough (e.g., for a large-scale

shell model calculation, see Ref. [1]), and the unknown

leptonic mass-hierarchy and the Majorana nature of

neutrinos are expected to be discovered.

As seen in the following the neutrino potential ap-

pears in the calculation of NMEs. In this paper neu-

trino potential for neutrinoless double beta decay is

studied from a statistical point of view.

2 Neutrino potential

2.1 Nuclear matrix element

Nuclear matrix element in double beta decay is

investigated under the closure approximation. It ap-

proximates all the different virtual intermediate en-

ergies by a single intermediate energy (i.e., with the

averaged energy called closure parameter). For neu-

trinoless double beta decay, nuclear matrix element is

written by

M0ν =M0ν
F − g2

V

g2
A
M0ν

GT+M0ν
T , (2)

where gV and gA denote vector and axial coupling con-

stants, respectively, and α of M0ν
α is the index for

the double beta decay of three kinds: α = F, GT,

T (Fermi, Gamow-Teller, and tensor parts). Accord-

ing to Ref. [2], each part is further represented by the
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sum of two-body transition density (TBTD) and anti-

symmetrized two-body matrix elements.

M0ν
α = ⟨0+f |O

0ν
α |0+i ⟩

=
∑

TBTD(n′
1l

′
1j

′
1t

′
1,n

′
2l

′
2j

′
2t

′
2,n1l1j1t1,n2l2j2t2;J)

⟨n′
1l

′
1j

′
1t

′
1,n

′
2l

′
2j

′
2t

′
2;J |O0ν

α (r)|n1l1j1t1,n2l2j2t2;J⟩AS ,

(3)

where O0ν
α (r) are transition operators of neutrinoless

double beta decay, and 0+i and 0+f denote initial and

final states, respectively. The sum is taken over in-

dices (nilijiti,n
′
jl

′
jj

′
jt

′
j) with (i, j = 1,2), where ni, li,

ji and ti (i, j=1,2) mean the corresponding principal,

angular momentum and isospin quantum numbers, re-

spectively, j1 and j2 (or j′1 and j′2) are coupled to J

(or J), similarly l1 and l2 (or l′1 and l′2) are coupled to

λ (or λ′), and t1 = t2 = 1/2, t′1 = t′2 =−1/2 is valid if

neutrons decay into protons.

The two-body matrix element before the anti-symmetrization is represented by

⟨n′
1l

′
1j

′
1t

′
1,n

′
2l

′
2j

′
2t

′
2;J |O0ν

α (r)|n1l1j1t1,n2l2j2t2;J⟩
=2

∑
S,S′,λ,λ′

√
j′1j

′
2S

′λ′√j1j2Sλ⟨l′1l′2λ′S′;J |Sα|l1l2λS;J⟩ ⟨n′
1l

′
1n

′
2l

′
2;J |Hα(r)|n1l1n2l2⟩

l′1 1/2 j′1

l′2 1/2 j′2

λ′ S′ J




l1 1/2 j1

l2 1/2 j2

λ S J

 ,

(4)

where Hα(r) is the neutrino potential, Sα denotes spin operators, S and S′ mean the two-body spins, and {·}
including nine numbers denotes the 9j-symbol. By implementing the Talmi-Moshinsky transforms:

⟨nl,NL|n1l1,n2l2⟩λ⟨n′l′,N ′L′|n′
1l

′
1,n

′
2l

′
2⟩λ′ , (5)

the harmonic oscillator basis is transformed to the center-of-mass system.

⟨l′1l′2λ′S′;J |Sα|l1l2λS;J⟩⟨n′
1l

′
1n

′
2l

′
2;J |Hα(r)|n1l1n2l2⟩

=
∑

n,n′,l,l′,N,N ′

⟨nl,NL|n1l1,n2l2⟩λ⟨n′l′,N ′L′|n′
1l

′
1,n

′
2l

′
2⟩λ′⟨l′Lλ′S′;J |Sα|lLλS;J⟩⟨n′l′|Hα(

√
2ρ)|nl⟩ ,

(6)

where ρ = r/
√
2 is the transformed coordinate of

center-of-mass system. In this paper we focus on the

neutrino potential effect arising from

⟨n′l′|Hα(
√
2ρ)|nl⟩ . (7)

This part is responsible for the amplitude of each tran-

sition from a state with n, l to another state with n′, l′,

while the cancelation is determined by spin-dependent

part.

2.2 Neutrino potential represented in the
center-of-mass system

We pay special attention to the neutrino poten-

tial part Eq. (7). Under the closure approximation

neutrino potential at the massless neutrino limit
[3–5]

is

Hα(
√
2ρ)= 2R

π

∫∞

0

fα(
√
2ρq)

hα(q)

q+⟨E⟩ q dq , (8)

where q is the momentum of virtual neutrino, R de-

notes the radius of decaying nucleus, and fα is a spher-

ical Bessel function (α = 0,2). In particular ⟨E⟩ is

called the closure parameter, which means the aver-

aged excitation energy of virtual intermediate state.

For the usage of ordinary light neutrinos, the neutrino

potential in the massless limit is sufficient. In Eq. (8)

neutrino potentials include the dipole form factors (not

just the form factors) that take into account the nu-

cleon size. The representation of neutrino potentials

are

hF(q
2)=

g2V
(1+q2/Λ2

V)
4

,

hGT(q
2)=

2

3

q2

4m2
p
(µp−µn)

2 g2V
(1+q2/Λ2

V )4
+(

1− 2

3

q2

q2+m2
π

+
1

3

(
q2

q2+m2
π

)2
)

g2A
(1+q2/Λ2

A)
4

,

hT(q
2)=

1

3

q2

4m2
p
(µp−µn)

2 g2V
(1+q2/Λ2

V)
4
+(

2

3

q2

q2+m2
π

− 1
3

(
q2

q2+m2
π

)2
)

g2A
(1+q2/Λ2

A)
4

,

(9)

where µp and µn are magnetic moments satisfying

µp−µn = 4.7, mp and mπ are proton mass and pion
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mass, and ΛV = 850 MeV, ΛA = 1086 MeV are the

finite size parameters.

Fig. 1 shows the integrand of Eq. (8). In any case

ripples of the form: qρ = const. can be found if q

and ρ are relatively large. The upper-value of the

integral range should be at least equal to or larger

than q = 1000. In our research including our recent

publication
[1]
, we take q = 2000 MeV and r = 10 fm

as the maximum value for numerical integration of

Eq. (8) (massless neutrino cases). This setting: qmax =

2000 MeV and rmax = 10 fm is sufficient to obtain 3-

digit accuracy of the nuclear matrix element.

Fig. 1. (color online) Integrands of Eq. (8) are depicted for n= n′ =0 and l= l′ =3 in panel a, and for n= n′ =1

and l = l′ = 0 in panel b. The plots are made for r =
√
2ρ = 0 to 10 fm and q = 0 to 1 000 MeV. The closure

parameter ⟨E⟩ is fixed to 0.5 MeV, which is suggested by the calculation without using closure approximation
[5]
.

3 Statistics

Since actual quantum states are represented by

the superposition of basic states such as |nl⟩ in the

shell-model treatment, the contribution of neutrino po-

tential part can be regarded as the superposition:∑
n,n′,l,l′

kn,n′,l,l′ ⟨n′l′|Hα(
√
2ρ)|nl⟩ . (10)

Using a suitable set of coefficients {kn,n′,l,l′} deter-

mined by the nuclear structure of grandmother and

daughter nuclei. Accordingly it is worth investigat-

ing the statistical property of neutrino potential part

Eq. (7).

Frequency distribution of neutrino potential part

Eq. (7) is shown in Fig. 2. The values are always posi-

tive for Fermi and Gamow-Teller parts, while the ten-

sor part includes non-negligible negative values. In-

deed, the sum of positive and negative contributions

of tensor part suggests that total sum 19.88 is obtained

by the cancelation between +23.128 and −3.248 (i.e.,

19.880 = 23.128−3.248). The order of the magnitude

is different only for the tensor part. Indeed, the aver-

age of the nonzero components is 0.350 for the Fermi

part, 0.324 for the Gamow-Teller part, and 0.025 for

the tensor part. Contributions with l = l′ = 0 (sum)

cover 27.1% of the total contributions (sum) for Fermi

and Gamow-Teller parts, and 7.2% for the tensor part.

Fig. 2. (color online) Frequency distribution of ⟨n′l′|Hα(
√
2ρ)|nl⟩ is shown limited to nonzero cases. Cases with

n,n′ =0,1, · · · ,3 and l, l′ =0,1, · · · ,6 are taken into account, where note that l ̸= l′ results in ⟨n′l′|Hα(
√
2ρ)|nl⟩=0

in Fermi and Gamow-Teller cases
[2]
. The total number of events with nonzero ⟨n′l′|Hα(

√
2ρ)|nl⟩ is shown in

each panel.
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Large contributions for Fermi, Gamow-Teller and

tensor parts are summarized in Table 1. Contribution

labeled by (n l n′ l′) = (0 0 0 0) (i.e. transition be-

tween 0s orbits) provides the largest contribution in

any part. Roughly speaking, we see that s-orbit (l=0

or l′ = 0) plays a significant role. The order of the

kind (n l n′ l′) are exactly the same for Fermi and

Gamow-Teller parts as far as the top 10 list is con-

cerned. Ten largest contributions (sum) cover 45.0%

of the total contributions (sum) for the Fermi part,

46.1% for the Gamow-Teller part, and 10.1% for the

tensor part. The minimum value for the tensor part is

-0.0450 achieved by (n l n′ l′)= (0 4 1 0) and (1 0 0 4).

Correlation between the values of Eq. (8) for dif-

Table 1 Large contributions are listed from 1st to 10th largest ones. Two symmetric cases resulting in an
equivalent value are shown in the same position for the tensor part with l ̸= l′.

Ranking
Fermi Gamow-Teller Tensor

(n l n′ l′) Value (n l n′ l′) Value (n l n′ l′) Value

1 (0 0 0 0) 1.626 (0 0 0 0) 1.488 (0 0 0 0) 0.224 9

2 (1 0 1 0) 1.307 (1 0 1 0) 1.227 (0 0 0 1) 0.1637

(0 1 0 0)

3 (2 0 2 0) 1.133 (2 0 2 0) 1.081 (1 0 1 0) 0.1579

4 (0 1 0 1) 1.126 (0 1 0 1) 1.051 (0 1 0 1) 0.1435

5 (3 0 3 0) 1.018 (3 0 3 0) 0.982 (2 0 2 0) 0.1248

6 (1 1 1 1) 1.006 (1 1 1 1) 0.937 (0 0 1 1) 0.1204

(1 1 0 0)

7 (2 1 2 1) 0.922 (2 1 2 1) 0.861 (1 1 1 1) 0.1203

8 (0 2 0 2) 0.899 (0 2 0 2) 0.859 (0 1 0 2) 0.1130

(0 2 0 1)

9 (3 1 3 1) 0.859 (3 1 3 1) 0.805 (1 0 1 1) 0.1115

(1 1 1 0)

10 (1 2 1 2) 0.836 (1 2 1 2) 0.790 (0 0 0 2) 0.1112

(0 2 0 0)

ferent parts are examined in Fig. 3. Comparison be-

tween Fermi and Gamow-Teller parts shows that they

provide almost the same values, although the Fermi

part generally shows slightly larger value compared to

the Gamow-Teller part. Such a quantitative similar-

ity between Fermi and Gamow-Teller parts is not triv-

ial since we can find essentially different mathematical

representations at least in their form factors (Eq. (9)).

The tensor part is positively correlated with the Fermi

part (therefore Gamow-Teller part). The l = l′ com-

ponents of the tensor part contributions (sum) cover

26.0% of the total tensor part contributions (sum).

Fig. 3. (color online)Correlation between Eq. (8) values are examined by assuming l= l′. (a) Correlation between

Eq. (8) values for Fermi and Gamow-Teller parts, where the condition l= l′ does not bring about any limitations

for Fermi and Gamow-Teller parts. (b) Correlation between Eq. (8) values for Fermi and tensor parts, where

values for the tensor part is always positive if l= l′ is assumed. For both panels, top 10 contributions listed in

Table 1 are included in dotted-blue rectangles, and the average of all the nonzero contributions are shown in

green dashed lines.
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4 Summary

There are components of the two kinds in the nu-
clear matrix element; one is responsible for the am-
plitude and the other is for the cancelation. As a
component responsible for the amplitude, neutrino po-
tential part (i.e., Eq. (7)) is investigated in this pa-
per. The presented results are valid not only to a
specific double-beta decay candidates but also to all
the possible candidates within n,n′ = 0,1, · · · ,3 and
l, l′ =0,1, · · · ,6. Note that, in terms of the magnitude,
almost 40% smaller values are applied for the Gamow-
Teller part in calculating the nuclear matrix element
since (gV/gA)

2 =(1/1.27)2 ∼ 0.62 (cf. Eq. (2)).
Among several results, positive correlation of the

values between Fermi, Gamow-Teller and tensor parts
has been clarified. Apart from the tensor part values,
almost a half of the total contributions has been shown
to be occupied only by 10 largest contributions, and
27% of the total contribution has been found out to be

occupied by the l= l′ =0 contributions.
The other components of the NMEs also respon-

sible for the cancelation will be studied in the next
opportunity.
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无中微子双β衰变相关的中微子势

Yoritaka Iwata1,2,1)
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摘要: 介绍了在双β衰变中的闭合近似下的原子核矩阵元，并在此基础上研究了无中微子双β衰变的中微子势部分

及统计性质。分析结果显示，费米型和伽莫夫-泰勒型矩阵元部分贡献了几乎相等的正值，并且费米型部分一般比伽

莫夫-泰勒型部分的贡献稍大，而张量部分的贡献虽小但不可忽略，其中有少量矩阵元为负。阐明了无中微子双β衰

变的中微子势中费米型、伽莫夫-泰勒型及张量部分大于零矩阵元的关联。该统计结果粗略地揭示了这些组份对原子

核矩阵元的贡献。
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