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Soliton Solution with Different Initial Chiral Angle in the
Chiral Quark Soliton Model
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Abstract: We use three different initial chiral angles to give the solution of the mean-field equation of
the system with baryon number B =1 for the first iteration, to investigate which initial chiral angle will
make the self-consistency reach faster. From the first iteration from different initial chiral angle, we found
that the result from the exponential form chiral angle is closer to the self-consistent one than the other

two initial chiral angles.
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1 Introduction

The chiral quark soliton model is one of QCD ef-
fective theories incorporating the spontaneous chiral
symmetry breaking of the low-energy QCD[I]. It in-
cludes both valence quark degree of freedom and the
contribution from Dirac sea quarks. The two flavor
Lagrangian of the chiral quark soliton model is

Ly =q(z)iDq(z) , (1)
where iD is
iD=igd—M(oc+inmT7s) , (2)

M is the only free parameter of the model. It is the
constituent quark mass.

It is worthwhile to investigate which initial pro-
file function will make the self-consistent determina-
tion process consuming less time. We investigate the
first iteration profile function P(r) using three different
initial chiral angles to see which resultant P(r) after
the first iteration is the closest to the self-consistent
one to gain some insight into this problem.

Those three chiral angles are:

(1) a linear form!?

P(r)= _;T[ r

—m,(0<r<R), (3)
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(2) an exponential form!®!:

=)+

P(r)=—-nme™ & , (4)
(3) an inverse trigonometric form!!

P(r)= —2naucctan(§)2 , (5)

where n is the topological winding number and R char-
acterizes the size of the meson proﬁle[4]. The chiral

angle should satisfy the boundary conditions!):

P(cc) =0, P(0)——m. (6)

These three chiral angles are plotted in Fig. 1.

]! —— Exponential chiral angle
! - --- Antitiangometric
e Linear

Intial chiral angle P(r)

0 5 10 15 20 25 30
r/fm

Fig. 1 Three different initial chiral angles.
Including the linear form (dotted line), the exponen-
tial form(solid line), and the inverse trigonometric form
(dashed-line).
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This article is organized as followed: In Sect. 2 we
introduce how the field equations for meson fields are
derived. In Sect. 3, we present the first iteration result
of the field equation from the three initial chiral angles.
The conclusions are reserved in Sect. 4.

2 The field equations for meson fields

The vacuum functional of the chiral quark soliton

model ism:

Z= JDﬂDquexp[i Jd“xq(i F-MUNg . (7)

After integrating over the fermion fields ¢ and ¢, one
obtains the effective action:

Seff =—Spln(—iD) =

= —Indet[8(=- + )] (8)

—Indet(—iD)

where h denotes the single quark hamiltonian, such
that:

h= ﬂ—O—Mﬁ( (r)+im(r)Tys) ,

hox(r) =Ex¢ox(r) . (9)

The classical energy of the soliton can be esti-
mated from the quark determinant in Eq. (8)[5]. It
can be written as:

= Eval + Evacum ; (10)

Eclassical

FE,a1 is the valence quark energy contribution and
FEyacum is the sea quarks energy contribution.

Because the effective action is ultraviolet diver-
gent and it can be regularized using a proper-time reg-
ularization such that!® 7

re i > dr
SEHg :§NCTK rAz T

Sp o770 _emr et ] ()
the total energy is then given as:

Esoliton :Eval [P( )] +Evacum[P(7')] -

> ds

=Nc Eval+4\/>NJ+ 3/2
[ZG—S(EA/A)Z_ZG—S(EAV/A)zl ) (12)

A A

Evacum [P(T) = 0}

A is also a parameter of the chiral quark soliton model,
coming from the Proper-time regularization which can
be set as 650 MeV®. M denotes the constituent quark

mass, which can be set as 420 MeVE, E), is the en-
ergy of the free single quark hamiltonian, such that:

hO ﬂ_’_Mﬂ,

hox, (1) =Ex, ¢x, (T) - (13)

The field equations for meson fields can be ob-
tained by demanding the total energy of the soliton be
stationary with respect to variation of the chiral angle
P(r)[4’ 9 such that

0p(r) Esoliton =0 . (14)
This equation can then be simplified to:
sin P(r) Sy (r) =cos P(r) Py (1) , (15)
where
S (1) =¢vat (1, Q) dvan (r, )+
; (—ﬁ Jjo dss_l/Q%e_s(ETA)z) X

(5>\ (Tv Q)¢>\ (Ta Q) )
:ggval (T Q) (i?T'Y5)¢val (7’, Q)-‘r

—s(Z2)?
Z \/EJ ©
(ZSA(TvQ)(”ﬂT’Y )(;5,\(7”,Q) ) (16)

P,(r)

3_1/2& X

ox(r,Q) and FE) are the eigenfunctions and the cor-
responding eigenvalues of the single particle hamilto-
nian.

Eq. (14) is solved self—consistenly[g}.
dure is: (1) solve the eigenequation of the single parti-

The proce-

cle hamiltonian Eq. (9) using an initial profile function
P(r). This step is accomplished by using a Kahana-
Ripka method which is given in Appendix, (2) a new
set of Sy (r) and P, (r) is obtained using the eigenfunc-
tions and the eigenvalues of the hamiltonian Eq. (9).
(3) solve (15) to get the first iteration profile function
P(r). (4) repeat (1) to (3) to get the nth iteration P(r)
until the satisfying self-consistency is reached.

3 Numerical results and discussions

The first iteration chiral angles from different ini-
The first
iteration from the linear one has already been given in
Ref. [9]. They use A/M as the free parameter, which
they set it to be 1.4 when calculating the self-consistent
profile function. In our work, the value of A/M approx-
imately equals to 1.54.

tial chiral angles are presented in Fig. 2.
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Fig. 2 The first iteration P(r) originating from three dif-
ferent initial chiral angles.
Including an initial linear form (dotted line), an initial ex-
ponential form(solid line), an initial inverse trigonometric
form (dashed-line).

It is easily seen from the picture that: the first
iteration chiral angle from inverse trigonometric chiral
angle vanishes after around 3 fm; the one from linear
form vanishes after around 2 fm; and the one from
exponential form vanishes after around 2.5 fm.

The self-consistent soliton solution after many
times iteration has been given in Ref. [3, 9]. In com-
parison with the more accurate self-consistent soliton
solution, it can be seen from Fig. 2 that in the re-
gion around r < 0.5 fm the first iteration self-consistent
soliton solution from the initial inverse trigonometric
form is closer to the more accurate self-consistent so-
lution; the first iteration self-consistent soliton solu-
tion from the initial exponential form is less close to
the more accurate self-consistent one; the first itera-
tion self-consistent soliton solution from the initial lin-
ear form is the least close one. However, in the re-
gion around 3 > r > 0.5 fm it can also be seen from
Fig. 2 that the first iteration self-consistent soliton so-
lution from the initial exponential form is closer to
the more accurate self-consistent solution; the first it-
eration self-consistent soliton solution from the initial
inverse trigonometric form is less close to the more
accurate self-consistent one; the first iteration self-
consistent soliton solution from the initial linear form
is the least close one. On the whole, the first iteration
self-consistent soliton solution from the initial expo-
nential form is closer than the inverse trigonometric
one to the more accurate self-consistent solution.

Therefore, we can conclude that if the initial
profile function is in the exponential form, the self-
consistency will be reached sooner than those in the
linear form or the exponential form after the same
times of iteration.

4 Conclusions

In conclusion, we investigate how fast the self-
consistency of the self-consistent soliton solution for
B = 1 system in the chiral quark soliton model is
reached through comparing the first iteration of the
self-consistent solution from three different initial chi-
ral angles, including a linear one, an exponential one
The results show
that the self-consistency of the self-consistent soliton

and an inverse trigonometric one.

solution reaches faster than the other two chiral angles
when using the exponential chiral angle as the initial
chiral angle.

In our future work, we will present the more accu-
rate self-consistent soliton solution after many times
iteration, and take a more detailed insight into this
problem.

5 Appendix: Kahana-Ripka numeri-

cal method

The eigenstates of ho can be used as a set of com-
plete basis to calculate the eigenvalues of h, which is
done by diagonalize h in the basis of the eigenstates of
ho [2], because both hg and h commutes with the grand-
spin operator G = J+7(J = L+.5) and the relativistic
parity operator f[

According to Ref. [2,8,10], a plane-wave basis is
used as the eigenfunction of hg. They can be di-
vided into natural parity and unnatural parity. The
states with natural parity are those with GF =
07,17,2%...(G # 0). For each GF(G # 0), there are
four independent plane-wave solutions

™ _y kijc(kr)|0>
Pa ~ =1k . 3
mJG—H(kT) 2)
. (i) 1)
Yy =4Vk - . ;
o)
k
i———ja(kr)|0
Xgn) :Nk 1|€k|+MJG( T)‘ > ’
—ig+1(kr)|2)
k
i————ja(kr)|1
ja—1(kr)|3)

where (™ and gp}(:‘") are the positive energy solutions

with e, = VA2 + M2 and y\™ and Xl(j") are the negative
energy solutions with e, = —vk2+ M?2 .

The unnatural parity states are those with G =
07,1%,27...(G#0), there are also 4 independent solu-
tions for each GF:
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g2 (k1) 2) - el3)— oy — C2VEEED)
o0, : (0] [3) = (3] 7]0) = Y T
* —————ja(kr)[0) |’
lex|+M (kr)10) R . (—2,/G(G+1))
—_— <1|T'T|2>=<2|T'T|1>=W7
oo =Ny Ukc_l( N (1]7-7]3) = (3] 1) = —— (20)
b WJG(]W) 1) - C2GH+1
() iHLMjCHl(k;r) 2) For G'3# G35 or G’ # G, the values are zero.
Xa =Nk €k + ) To calculate the eigenvalues of h, the continuous
Ja(kr)[0) parameter k has to be discretized by imposing the
) k ) (k) [3) Kahana-Ripka boundary condition:
i———jg-1(kr
Xl()u) =N ek ] e : (18)
—Ja(kr)|1) ja(knD)=0.
where @gu) and sol()") are the positive energy solutions D is the radius of a spherical box where the system

with e, = Vk2+ M?2 and XS:" and xl()") are the negative
energy solutions with e, = —Vk2+ M?2.

The normalization of the plane waves are given
by[s]
—1
2|e|

Np= |1
g [M+|ek

~1 3
] lz\jcﬂ(kl)ﬂ]

The equation below are the angular basis
corresponding to the angular momentum coupling

scheme!®:

0)=li=@, j=G++,6Gs) |

2
. 1
|1>: lzG? J:G_vaG3> )
[2)=|1=G+1, j=G+,GGs)
|3>:l:G—1,j:G—%,GG3>. (19)

They form a complete orthogonal basis. According
to Ref. [2], the non-vanishing elements of (I'j'GG3|#-
T|ljGG3) are

R o 1
(0]7-T[2) = (2/7-710) = 3 -

has been put in. It is chosen to be larger than the
soliton size. In our work, we set it as D ~ 6/M. The
basis is made finite by imposing a cut-off kmax on the
momentum k. It should be noticed that the cut-off
kmax has no physical meaning and has nothing to do
with the momentum cut-off A mentioned before. We
use the same kmax ~7TM as Ref. [3].
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