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Abstract：We investigate the static vortex solutions of a bilayer quantum Hall state at the Landau-level filling
factor υ = 1/2. This work is based on the ZHK model, which is an effective field theory including Chern-
Simons gauge interactions. We deduce the dimensionless nonlinear equations of motion for vortices possessing
cylindrically symmetry, and analyze the asymptotical behaviors of solutions. Additionally, we analyze the values
of critical coupling constants under the self-dual condition, and obtain the self-dual equations. Finally, vortices
of type (0, 1), (0, −1), (1, −1) and (−1, −1) are solved with numerical methods. We reach the conclusion
that vortex of type (1, −1) is unstable, which will decay to (1, 0) and (0, −1). The vortices of type (0, −1)
and (−1, −1) are self-dual solutions from numerical results.
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1 Introduction

The discovery of the fractional quantum Hall effect

(FQHE) in 1982 opened an exciting new area in condensed

matter physics. Many theories have been constructed to ex-

plain the FQHE, among of which the ZHK model is a sim-

ple and effective one. The ZHK model, proposed by Zhang

et al.[1−2] and Read[3], is an effective field theory like the

Landau-Ginzburg theory of superconductivity. It could de-

scribe almost all the properties of the fractional quantum

Hall effect. In this model, the interacting electrons are

not only coupled to an external electromagnetic field but

also interacted with an additional gauge field, which is the

Chern-Simons gauge field.

Bilayer quantum Hall systems are typically construct-

ed by trapping electrons in two thin layers at the interface

of the semiconductors. This structure introduces an addi-

tional degree of freedom in the z direction, which means
new physics different from the monolayer systems. In this
paper, we will study a special type of FQH states, which
is called the bilayer-locked state, denoted by (m, n, l)[4].

Here, m, n should be two odd integers, and l be an integer,

l 6 m, n. The electrons between the two layers are strong-

ly correlated, which could be described by the Halperin

wave function. We will search for the vortex solutions in

a bilayer-locked state with the Landau-level filling factor

υ = 1/2, which is denoted by (3, 3, 1). This state can

only exist in bilayer systems, and has been observed exper-

imentally [5−6].

2 The ZHK model in bilayer systems

We consider electrons confined in the xy plane in the

presence of a uniform external magnetic field along the z

axis, B=(0, 0, −B⊥), with B⊥ > 0. Provided that the Zee-

man splitting is large enough and the electrons are all po-

larized, the dynamical degree of freedom associated with

spins could be ignored. Thus electrons in different layers

could be described by two scalar fields φI . In the following

analysis, we take the notation that the charge of electron is

q =−e, e = 1 and the metric is gµν = (1, −1, −1).

The Lagrangian of the effective theory of the FQHE

Received date: 30 Jan. 2013； Revised date: 17 Apr. 2013

Foundation item: National Natural Science Foundation of China(11035006, 11175215)

Biography: HUANG Xianjun(1982–), male, Guanghan, Sichuan, China, Master, working on the field of theoretical physics;
E-mail:huangxj@impcas.ac.cn. http://www.npr.ac.cn



第 2期 HUANG Xianjun：Vortex Solutions of Bilayer Quantum Hall Systems at υ = 1/2 · 129 ·

in bilayer systems takes the form from Refs.[7–9] (in units

in which c = h̄ = 1)

L =
2

∑
I=1, J=1

−ΘIJεµνλ aIµ ∂ν aJλ+

2

∑
I=1

φ†
I (i∂ 0 −q(aI0 +A0))φI−

1
2M

|(−i▽+q(aI +A))φI |2 −V (ρ) (1)

with

V (ρ) =
2

∑
I=1

U
2
(|φI |2 −ρ)2 +W (|φ1|2 −ρ)(|φ2|2 −ρ) ,

where the subscript, I, J = 1, 2, labels the layers, and the

Greek index, µ, ν , λ = 0, 1, 2, labels the time and space

components.

The first term in Eq. (1) is the Chern-Simons term,

which is associated with all the topological properties of

the system, such as the Hall conductance and the fraction-

al charge carried by the vortex. This model introduces two

Chern-Simons gauge fields, denoted by aIµ , I = 1, 2. They

are coupled by the coupling matrix

Θ =
e2

4π(m2 −n2)

 m −n

−n m


which determines the statistical properties of electrons. In

this paper, we work with m = 3 and n = 1. εµνλ is the anti-

symmetric tensor with ε012 = 1, the effect of which breaks

the the parity P and time reversal invariant T .

The covariant derivative in the next two terms in-

volves both the Chern-Simons gauge field aIµ and the ex-

ternal gauge field Aµ . Aµ is the external gauge field de-

scribing the external magnetic field. As we never consider

the electric field here, it is convenient to work with the

Coulomb gauge, where A0 = 0 and ∇∇∇ ·AAA = 0.

The last term in Eq. (1) is the self-interaction term,

where the long-range Coulomb interaction between elec-

trons is replaced by effective contact interactions[1, 10−11].

The factor 1/2 here is to ensure that each interaction is

included only once. U and W are both positive coupling

constants, which have dimensions of length. Generally, in-

tralayer interactions are not equal to interlayer interactions,

U ̸=W [11]. The average density in the two layers takes the

same value ρ at the (3, 3, 1) state from the result[4].

The equations of the motion from the Lagrangian Eq.

(1) are

qÃI0φI =
1

2M
D2

IiφI −
∂V

∂φ†
I

(2)

with

∂V

∂φ†
1

=U(|φ1|2 −ρ)φ1 +W (|φ2|2 −ρ)φ1 ,

∂V

∂φ†
2

=U(|φ2|2 −ρ)φ2 +W (|φ1|2 −ρ)φ2 ,

2

∑
J=1

ΘIJ(∂1aJ2 −∂2aJ1) =− q
2
|φI |2 , (3)

2

∑
J=1

ΘIJεi j∂ jaJ0 =
q

4Mi

{
(DIiφI)

†φI −φ†
I DIiφI

}
. (4)

Here, we ignore the terms which possess the derivative of

fields with respect to time. Since we are concerned with

static classical solutions, all fields are time independent.

The covariant derivative is given by DIµ = ∂µ + iqÃIµ ,

with effective vector potential ÃIµ defined by ÃIµ = aIµ +

Aµ . Note that DIµ involves the Chern-Simons gauge field

and the external gauge field, both of which are combined

into the effective vector potentials ÃIµ . It is natural to ex-

press the equations in terms of effective vector potentials

ÃIµ , instead of aIµ and Aµ , as in Ref. [12].

From the constraint Eq. (3), the Chern-Simons vector

fields are completely determined by the electron densities.

It coincides with the fact that the Chern-Simons fields are

statistical fields rather than dynamical fields. There are on-

ly two independent dynamical fields φ1 and φ2.

We can change the form of Eq. (3) into

b1 =
2π
e

(
m|φ1|2 +n|φ2|2

)
,

b2 =
2π
e

(
n|φ1|2 +m|φ2|2

)
, (5)

where bI are the Chern-Simons magnetic fields, defined

by bI = ∂1aI2 − ∂2aI1. It means the electron in the first

layer carries two kinds of fluxes, i.e. the flux of a1µ is

ϕ1 = 2πm/e, and the flux of a2µ is ϕ2 = 2πn/e. The situ-

ation is similar for the electron in the second layer, which

possesses ϕ1 = 2πn/e and ϕ2 = 2πm/e. As can be seen in

Eq. (1), the electron in the Ith layer can only couple with

the aIµ . Considering two electrons in the same layer, as

one electron moves adiabatically around another electron,

the wave function acquires a phase change 2πm, due to the

Aharonov-Bohm effect. But in the case when electron 1 is

in the first layer, electron 2 in the second layer, we move
http://www.npr.ac.cn
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electron 2 round the electron 1. The moving electron 2 can

only feel the part of flux ϕ2 = 2πn/e, carried by electron 1,

so the phase change is 2πn. All the conclusions coincide

with the Halperin wave function[13]

ψmmn =Π(zi − z j)
mΠ(wi −w j)

mΠ(zi −w j)
n×

exp
[
− 1

4

(
∑ |zi|2 +∑ |wi|2

)]
. (6)

It is necessary to mention that the parameter M in

Eq. (1) is not the mass of the electron[8] but a param-

eter with mass dimension depending on the Coulomb

interaction[1, 3, 7]. As has been proposed in Zhang et al.’s

paper[1], the effective action takes the same form as the

microscopic action, but with a renormalized constant M

replacing the bare mass me, and an effective contact inter-

action replacing the nonlocal interaction Coulomb interac-

tion. M, U and W are treated as phenomenological para-

meters.

3 Dimensionless vortex equations with
cylindrical symmetry

We will search for a set of static classical vortex solu-

tions. It is natural to take assumptions that the vortices are

cylindrically symmetric. Vortices should be solved with

polar coordinates (r, θ).
The form of equations of motion can be expressed

more clearly, when the Euler-Lagrange equations are

rewritten in terms of effective vector potential ÃI only.

First, we note that

ÃI0 = aI0 , (7)

as A0 = 0. Then, due to the relation ∂1AAA2 − ∂2AAA1 = −B⊥,

we could obtain

∂1aI2 −∂2aI1 = B⊥+(∂1ÃI2 −∂2ÃI1) . (8)

Substituting Eqs. (7) and (8) into Eqs. (3) and (4) yields

2

∑
J=1

ΘIJ

[
(∂1ÃJ2 −∂2ÃJ1)+B⊥

]
=− q

2
|φI |2 , (9)

2

∑
J=1

ΘIJεi j∂ jÃJ0 =
q

4Mi

[
(DIiφI)

†φI −φ†
I DIiφI

]
. (10)

As we know, the FQHE can develop a series of plateaux,

when the magnetic field takes some special values. The

strength of B⊥ is expected to be determined by the mean

density and the filling factor. We use the result B⊥ =

2π(m+n)ρe directly[4].

The effective magnetic field in the Ith layer is intro-

duced as B̃I = ∂1ÃI2 − ∂2ÃI1. Eq. (9) can be transformed

to be

B̃1 = 2π
[
m(|φ1|2 −ρ)+n(|φ2|2 −ρ)

]
, (11)

B̃2 = 2π
[
n(|φ1|2 −ρ)+m(|φ2|2 −ρ)

]
. (12)

Eqs. (11) and (12) imply that the effective magnetic fields

vanish as the densities of electrons approach the mean val-

ue. Integrating Eqs. (11) and (12) over the whole space,

it is easy to find the relations between the charges and

effective magnetic fluxes carried by the vortex. We take

the symmetric gauge where the vector potential has the

form ÃI = ÃIθ (r)θ̂ , where θ̂ is the unit vector along the

azimuthal angle. The effective vector potential ÃI has only

θ component, which is a function depending on the radius.

In order to make the Euler-Lagrange equations dimen-

sionless, we need to rescale the variables. The scalar field

φI could be parameterized as the form

φI =
√

ρ fIeiλIθ , (13)

where fI is selected to be real and dimensionless, λ1 and

λ2 are two independent integers. As the Lagrangian pos-

sesses a U(1)×U(1) symmetry[8], the group space must

be S1 × S1. Meanwhile, the vortex is characterized by the

boundary condition at infinity, which is identical to a large

circle S1. The topology is determined by the homotopy

group π1(S1 × S1) = π1(S1)×π1(S1)[14] . Consequently,

the vortex is characterized by a pair of integers, λ1 and λ2.

We indentify the vortex with (λ1, λ2).

We also define the dimensionless coordinate variable

as ε = x/λ , where λ is a characteristic length relative to

the size of the vortex. The dimensionless effective vector

potential ÂI , defined by ÃIµ = ÂIµ/eλ , is introduced to

make the covariant derivative have the following form[15](
∂µ − ieÃIµ

)
φI =

1
λ

(
∂

∂εµ − iÂIµ

)
φI . (14)

Here we choose the characteristic length λ = 1/
√

2MρU .

Substituting the above Eqs. (13) and (14) into the Eqs. (2),

(9) and (10) yields

f ′′I +
1
r

f ′I −
(

λI

r
− ÂIθ

)2

fI +κ1ÂI0 fI +

(1− f 2
I ) fI +β (1− f 2

J ) fI = 0 , (15)
http://www.npr.ac.cn
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(If we take I = 1, then J = 2, and vice versa)

Â′
Iθ +

1
r

ÂIθ + B̂−κ2

2

∑
J=1

KIJ f 2
J = 0 , (16)

Â′
I0 +κ3

2

∑
J=1

KIJ f 2
J

(
λJ

r
− ÂJθ

)
= 0 , (17)

with K =
e2

4π
Θ−1, i. e.

K =

 m n

n m

 .

In Eqs. (15), (16) and (17), r is the dimensionless radius

and B̂ is defined by B̂ = eλ 2B⊥. The β = W/U is a para-

meter depending on the ratio of the two coupling constants

W and U . All the three parameters κ1, κ2 and κ3 are di-

mensionless, and they are defined by

κ1 =

√
2M
ρU

, κ2 =
π

MU
, κ3 =

2κ2

κ1
.

It should be emphasized that ÂI0 is a function of radius

only. And fI , ÂI0 and ÂIθ are all dimensionless fields.

4 Asymptotical conditions

The static energy of the vortex is expressed as

E =
∫

d2x
2

∑
I=1

[
1

2M
|DIiφI |2 +V (ρ)

]
. (18)

As we know, the vortices are stable objects with finite

energy. The energy-finiteness condition imposes a certain

boundary condition on the solutions of the fields. This con-

dition requires that each term of the energy density in Eq.

(18) vanishes at the point far away from the core of the

vortex. It means

DIiφI → 0 , (19)

V (ρ)→ 0, as r → ∞ . (20)

the condition Eq. (20) implies that the fields approach the

ground-state value

|φI | →
√

ρ , as r → ∞ . (21)

Consequently, it follows from Eqs. (11) and (12) that the

effective magnetic fields vanish at infinity. The effective

vector potentials are pure gauges in these areas, which can

be expressed as ÃAAI = − 1
q

∇(λIθ). The asymptotical form

is φI →
√ρeiλIθ . We rewrite it with the polar coordinates,

and find that

Ãr → 0 , ÃIθ →− λI

qr
, as r → ∞ .

The covariant derivatives satisfy

DIθ φI → 0 , DIrφI → 0, as r → ∞ .

Additionally, the total effective magnetic flux in the Ith lay-

er is quantized

ϕ̃I =
∫

d2xB̃I =
2πλI

e
. (22)

Consequently, the asymptotical conditions at infinity for

the dimensionless solutions are

fI → 1 ,

ÂIθ → λI

r
,

ÂI0 → 0 . (23)

The last condition in Eq. (23) is due to Eq. (2), the right

part of which vanishes as φI approaches the ground value.

We use these asymptotical conditions in Eq. (23) to select

the right parameters, when applying numerical methods.

It is convenient to rewrite the static energy with inte-

gration over the dimensionless radius

E =
πρ
M

∫ +∞

0
drr

2

∑
I=1

[
f ′2I +(

λI

r
− ÂIθ )

2 f 2
I

]
+

2πλ 2ρ2
∫ +∞

0
drr
[

U
2

2

∑
I=1

( f 2
I −1)2+

W ( f 2
1 −1)( f 2

2 −1)
]
. (24)

The asymptotic solutions for the short-distance limit

are easily found. The fields can be expanded in terms of

radius. It is sufficient to retain only the nontrivial lowest-

order terms in the core region. The vortex is labeled by a

pair of integers (λ1, λ2). We will calculate the vortices of

type (0, 1), (0, −1), (1, −1) and (−1, −1). In the case

of λI ̸= 0, the phase of scalar field on the Ith layer is well

defined except the point at the core center. It is a singular

point where φI should vanish, φI(0) = 0. But when we set

λI = 0, this kind of constraint never exists. The finiteness

of the effective magnetic fields also implies effective vec-

tor potential fields ÃIθ vanish at the origin. Thus, we divide
http://www.npr.ac.cn
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our problems into two cases. In the case λ1 = 0, λ2 =±1

the fields can be expressed as

f1(r)≃ η1 −
1
4
(
κ1σ1 +1+β −η2

1
)

η1r2 ,

f2(r)≃ η2r− 1
8

[
κ1σ2 +1+β

(
1−η2

1
)]

η2r3 ,

ÂIθ (r)≃− 1
2
(
B̂−κ2KI1η2

1
)

r+aI3r3,

ÂI0(r)≃ σI +bI2r2, as r ≪ 1 , (25)

where, η1, η2, σ1 and σ2 are free parameters, which fix all

the other coefficients of the Taylor expansions of the fields.

In the case |λ1|= 1, |λ2|= 1, the situation is the similar

fI(r)≃ ηIr−
1
8
(1+β +κ1σI)ηIr3 ,

ÂIθ (r)≃− 1
2

B̂r+
1
4

κ2 ∑KIJη2
J r3 ,

ÂI0(r)≃ σI −
1
2

κ3 ∑KIJη2
J λJr2, as r ≪ 1 , (26)

here, η1, η2, σ1 and σ2 are free parameters too.

5 Self-dual condition

Substituting the Bogomol’nyi decomposition[16]

|D1φ|2 + |D2φ|2 = |(D1 ± iD2)φ|2 ∓qB|φ|2 ± ε i j∂iJ j ,

(27)

where

J j =
1
2i

[
φ†D jφ −φ(D jφ)†

]
,

into the energy Eq. (18), and dropping the surface term, we

get that

E =
∫

d2x
2

∑
I=1

1
2M

[
|DI±φI |2 ∓qB̃I |φI |2

]
+V (ρ) , (28)

where

DI± = DI1 ± iDI2 .

We find

E =
∫

d2x
2

∑
I=1

1
2M

|DI±φI |2+(
U
2

± mπ

M

)( 2

∑
I=1

(|φI |2 −ρ)2

)
+(

W ± 2nπ
M

)(
|φ1|2 −ρ

)(
|φ2|2 −ρ

)
±

π(m+n)
M

ρ
2

∑
i=I

(
|φI |2 −ρ

)
. (29)

Now, we choose the minus sign and require that U and W

take critical values, U = 2πm/M and W = 2πn/M, respec-

tively, the coefficients of the second and third term vanish.

Using Eqs. (11) and (12), the energy can be written in a

simple form

E =
∫

d2x
2

∑
I=1

1
2M

|DI−φI |2−

1
4π(m+n)M

B⊥(B̃1 + B̃2) , (30)

where B̃I = ∂1ÃI2 −∂2ÃI1 is the effective magnetic fields.

From Eq. (30), the energy is bounded below by a mul-

tiple of the total effective magnetic flux. This bound is sat-

urated by solutions to the first order equations

(DI1 − iDI2)φI = 0 . (31)

Integrating Eq. (30) over the whole systems, we obtain

E =− ρ
2M

(ϕ̃1 + ϕ̃2) , (32)

where ϕ̃I is the effective magnetic flux defined in Eq. (22).

The energy is proportional to the sum of fluxes between

two layers. We will verify that the (0, −1) and (−1, −1)

both do give the right energy value coinciding with Eq.

(32). The two are indeed self-dual solutions.

We decompose the scalar field φI into its phase and

magnitude φI =
√ρIeiωI . From Eq. (31), the effective

gauge fields everywhere away from the zeros of the scalar

field can be expressed by the phase and magnitude of the

scalar fields[16]

qÃIi =−∂iωI +
1
2

εi j∂ j lnρI . (33)

Eqs. (11) and (12) then reduce to nonlinear equations for

the densities ρI

▽2 lnρ1 = 4πe2
[
m(ρ1 −ρ)+n(ρ2 −ρ)

]
,

▽2 lnρ2 = 4πe2
[
n(ρ1 −ρ)+m(ρ2 −ρ)

]
. (34)

Substituting Eqs. (27), (31), (11) and (12) into Eq. (2), it

is easy to find that ÃI0 = B̃I/2M. We could also change

the form of Eq. (33) into f ′I/ fI = eÃIθ −λI/r. Using these

relations, it is simple to find that Eq. (34) is equivalent to

equations of motion (15), (16) and (17).

6 Numerical solutions

The existence of external magnetic field makes the
http://www.npr.ac.cn
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parity P of the systems broken[17]. So the vortex of type

(0, 1) must behaves differently from (0, −1). In addition,

it is easy to find that the Lagrangian Eq. (1) maintains the

same form, when we interchange the layer index between

two layers. This implies we only need to study the solu-

tions of the types such as (0, 1) and (0, −1), other types

such as (1, 0) and (−1, 0) could be neglected.

We have to solve these nonlinear coupled Eqs. (15),

(16) and (17) with numerical method. Here, we choose

the electron mean density ρ = 1 and set the mass param-

eter M = 1. Suppose that U = 2, W = 2, this is the case

when the intralayer interaction and interlayer interaction

equals. We perform numerical calculations for vortices of

the type (0, −1), (0, 1) and (1, −1). The energy of vor-

tex is calculated using Eq. (24), and the charge is obtained

through the integration of f 2
I − 1. We find the parameters

η1 ≃ 1.116, η2 ≃ 1.311, σ1 ≃ −0.409 and σ2 ≃ −1.646

for type (0, − 1), whose energy is E(0, −1) ≃ 1.685. The

total charge carried by this vortex is
1
4

e, with Q1 ≃ − 1
8

e

and Q2 ≃ 3
8

e. The effective magnetic flux is found to

be ϕ̃1 ≃ 0 and ϕ̃2 ≃ −2π. The energy for vortex of

type (0, 1) is E(0, 1) ≃ 7.507, whose free parameters are

η1 ≃ 1.244, η2 ≃ 3.052, σ1 ≃ 2.779 and σ2 ≃ 16.178. The

total charge carried by this vortex is − 1
4

e, with Q1 ≃
1
8

e

and Q2 ≃ − 3
8

e. The free parameters for vortex (1, − 1)

are η1 ≃ 3.777, η2 ≃ 1.731, σ1 ≃ 20.707 and σ2 ≃ 4.016,

and the energy is E(1, −1) ≃ 11.237. It is neutral, with

Q1 ≃ − 1
2

e and Q2 ≃ 1
2

e. Since our solutions satisfy

the asymptotical conditions at large scale in Eq. (23),

it is expected that the vortices take fractional charge val-

ues on different la-yers, which agrees with the result from

Refs.[4, 18]. Here, the normalized scalar fields fI and

normalized magnetic fields BeffI = B̃I/B⊥ are depicted as

functions of dimensionless radius r for the vortices of type

(0, − 1), (0, 1) and (1, − 1). See Fig. 1 for details. We

find that the energy of vortex (1, − 1) is larger than the

sum of (0, −1) and (1, 0). In this case, vortex (1, −1) is

not stable. It will decay to two free vortices, the (0, − 1)

and (1, 0), with conserved topological number.

We take U = 2, but set W = 0, which implies the in-

Fig. 1 Vortex solutions of type (0, −1), (0, 1) and (1, −1) with U = 2 and W = 2.

Solid lines show fI and dashed lines denote BeffI .

teraction between electrons in different layers is switched

off. The vortices take the same charges as the former

case. The free parameters of (0, − 1) are η1 ≃ 1.082,

η2 ≃ 1.356, σ1 ≃ 0.285 and σ2 ≃ −1.654, whose ener-

gy E(0, −1) ≃ 1.808. The energy of (0,1) E(0, 1) ≃ 7.609,

with η1 ≃ 1.205, η2 ≃ 3.134, σ1 ≃ 2.973, σ2 ≃ 16.543

and E(1, −1) ≃ 11.497. Once again, vortex (1, − 1) is

also unstable. See Fig. 2. Finally, we consider the self-

dual solutions, in which case the coupling constants take

U = 2πm/M and W = 2πn/M. See Fig. 3. The solutions

for (0, −1) and (−1, −1) are indeed self dual solutions,

whose numerical energy value agrees with Eq. (32). The

static energy approximately equal π, E(0, −1) ≃ 3.14. The

charges on the first and second layers are nearly Q1 ≃− 1
8

e

and Q2 ≃
3
8

e, and the effective fluxes are ϕ̃1 ≃ 0 and ϕ̃2 ≃
−2π. Similarly, the energy for (−1, − 1) vortex is al-

most E(−1, −1) ≃ 2π, and the charges are Q1 ≃ 1
4

e and

Q2 ≃
1
4

e. The solutions for other vortices, such as (0, 1)

and (1, −1) are non-self dual solutions. We find that ener-

http://www.npr.ac.cn
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gy of vortex (0, 1) obtained through numerical integration,

E(0, 1) ≃ 8.65, which is much larger than that of the

(0, − 1) type. And for type (1, − 1), E(1, −1) ≃ 13.86.

Vortex (1, −1) will also decay.

Fig. 2 Vortex solutions of type (0, −1), (0, 1) and (1, −1) with U = 2 and W = 0.

Solid lines show fI and dashed lines denote BeffI .

Fig. 3 The coupling constants take the critical values U = 2πm/M and W = 2πn/M.

(a) and (b) are self-dual solutions, (c) is non-self dual solution. In the case of (b), fields in the two layers take the same value, the lines

coincide with each other.

7 Summary

In this paper, we study the vortices in the bilayer quan-

tum Hall systems at the filling factor υ = 1/2. All the

work is based on the ZHK model, which is an effective

field theory with Chern-Simons gauge interactions. We

take the assumption that the vortices are time independent

and possess a cylindrical symmetry for simplicity. Conse-

quently, the equations of motion could be radius dependen-

t only. We rescale the variables to obtain the dimension-

less Eqs. (15), (16) and (17), during which not only the

fields but also the parameters are all dimensionless. These

nonlinear coupled equations are solved through numerical

methods. It is surprising that solutions satisfying asymptot-

ical conditions in Eq. (23) do exist. We use these solutions

to integrate the charges and effective fluxes, yielding the

right fractional charge and flux unit. Vortices possess frac-

tional charges in the two layers. Q1 ≃− 1
8

e and Q2 ≃
3
8

e

for (0, −1). Q1 ≃
1
8

e and Q2 ≃− 3
8

e for (0, 1). The vor-

tex of (1, − 1) is neutral, with Q1 ≃ − 1
2

e and Q2 ≃
1
2

e.

We analyze the numerical energy values of vortices of the

type (0, − 1), (0, 1) and (1, − 1), finding that (1, − 1)

will decay to (0, − 1) and (1, 0). Additionally, we also

analyze the form of static energy, finding that the self-dual

solutions exist when the strength of self-interactions take

the values U = 2πm/M and W = 2πn/M. The vortices of

type (0, −1) and (−1, −1) are indeed the self-dual solu-

tions, the energy of which coincide with our analysis in Eq.

(32).
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双层量子霍尔系统在填充因子υυυ === 1/2态的涡流解

黄贤军1, 2, 1)

( 1.中国科学院近代物理研究所，甘肃兰州 730000；
2.中国科学院大学，北京 100049 )

摘要: 以双层系统的ZHK模型为基础，研究了双层量子霍尔系统在朗道填充因子取υ = 1/2这种状态的静态

涡流解。ZHK模型是一种包含Chern-Simons规范相互作用的有效理论。为了简便，假定涡流具有柱对称的结

构，随后写出了无量纲的非线性运动方程组，并分析了解的渐进行为。另外，在自对偶条件下，确定了自耦

合常数的形式，并写出了关于密度的自对偶方程。最后，使用数值方法找到了类型分别为 (0, 1)，(0, − 1)，

(1, −1)和(−1, −1) 的涡流解。发现拓扑数为 (1, −1)的涡流是不稳定的,它会衰变为 (1, 0)和 (0, −1)两种涡

流。数值结果表明，拓扑数为 (0, −1)和 (−1, −1)的涡流确实是自对偶涡流解。
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