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Abstract: We calculate the momentum distribution of nucleons in asymmetric nuclear matter with-

in the framework of the extended Brueckner-Hartree-Fock approximation at zero temperature, use

Argonne V18 potential as two nucleons potential . The isospin-asymmetry dependence of the nuc-

leon momentum distribution predicted and discussed. It is shown that as the asymmetry increases,

the proton momentum distribution become smaller while the neutron one gets higher below their

respective Fermi surfaces with respect to their common values in symmetric nuclear matter. The

quasi-particle strength at the Fermi momentum also calculated and discussed, we got an improved

fulfillment of the Migdal-Luttinger theorem and nucleon number conservation.
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1 Introduction

Many-body correlations induced by the nuc-
leon-nucleon interactions among nucleons play an
important role in a nuclear many-body system,
which make the system much more complicated
and have more plentiful properties than a non-in-
teracting Fermi system. For example, the effect of
correlations leads to the depletion of the nucleon
momentum distribution below the Fermi momen-
tum and the population above the Fermi momen-

—2]

tum in nuclear matter"' In nuclear matter the

stationary states are plane waves, so that the occu-
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pation probability for the “orbit” | %) is given by
the momentum distribution 2(£). The momentum
distribution of nucleons in nuclear matter has been
investigated extensively by using various theoreti-
7]

cal methods and models™" The related experi-

"1, The

nucleon momentum distribution is of great physical

mental data are also reported continually®

interest since it can be related to experiment ob-
servables in pick-up and knock-out reactions'®. In
Ref. [6], the authors calculated the nucleon mo-
mentum distribution and quasi-particle strength in

symmetric nuclear matter in the framework of the
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Brueckner-Bethe-Goldstone theory by including
high-order contributions in the hole-line expansion
of the mass operator and they found a good agree-
ment between their calculated results and the ex-
perimental data. In the present paper, we shall ex-
tend the previous investigation of Ref. [ 6] to asym-
metric nuclear matter and investigate the isospin
dependence of the nucleon momentum distribution
within the extended Brueckner-Hartree-Fock (EB-
HEF).

cluding the renormalization contributions in the

We improve the previous calculation by in-

hole-line expansion of the mass operator and got an
improved fulfillment of the Migdal-Lut- tinger the-
orem. The quasi-particle strength is also predicted
and the resulting value turns out to be in good a-
greement with experimental data* *.

The present paper is organized as follows. We
will describe briefly the adopted theoretical ap-
proach in Section 2. The numerical results are
presented and discussed in Section 3. In Section 4 a

summary is presented.

2 Theoretical framework

The present studies are based on the EBHF
approach for asymmetric nuclear matter''”). The
starting point of this framework is Brueckner reac-
tion G matrix which satisfies the following Bethe-

Goldstone (BG) equation™!

G(ps B3 w) =vww T

[kiks Y QCky s ko) Chiks |
o 2 w—e(k) —ek,) +iy

(ps Bs @) + (1)

kyk,

where vy is the realistic nucleon-nucleon interac-

tion, and we adopt the Argonne V18 two-body in-

[3)in our present calculation. In Ref. [11]

teraction
it has been shown that three-body forces have very
little influence on the nucleon momentum distribu-

1 and thus we do not include three-body

tion
effect in the present calculations. Q(k,, k,) is the
Pauli operator which prevents the two intermediate
nucleons from being scattered into the states below

the Fermi sea. The isospin asymmetry parameter

is defined as f=(p, —p,)/ps where p, s p, and p de-
note the neutron, proton and total nucleon number
densities, respectively. The BHF single particle
(s. p.) energy is given by

h?k?

2m

e(k) =

+U, (k) .

In solving the BG equation for the G-matrix, we
adopt the continuous choice for the s. p. potential
U,. Under the continuous choice, the s. p. poten-
tial describes physically at the lowest BHF level
the nuclear mean field felt by a nucleon in nuclear
medium and is calculated from the real part of the

on-shell G-matrix, i.e. ,

U, (k) = > n(k) X
.
Re(kk’ |GLe(k) + (D] k) 4 s

as pointed out by Mahaux et al. '), In order to pre-
dict reliably the s. p. properties within the Brueck-
ner theory, one has to go beyond the lowest BHF
approximation by considering the high-order con-
tributions in the hole-line expansion of the mass

operator. The mass operator is defined as™!,
Mk, w) =V (k, w) + W, w ., (2)

which is a complex quantity and its on-shell value
can be identified with the potential energy felt by a
nucleon in nuclear matter. According to the
Brueckner-Bethe-Goldstone theory, the mass ope-
rator can be expanded in a perturbation series ac-

cording to the number of hole lines, i.e. ,

Mk, w) =M, (k, w) +
Mz(k’ CU)JFM%(k’ w)Jr"'. (3)

The sum of all one-hole line graphs is called the
BHF approximation to the mass operator, it reads,

M, (b, w) =
Do (ks jlGLo+ eIk, jra. (D

Hereafter, we shall use j, [, *-+ denote the s. p.
states below the Fermi momentum; as b, ** de-
note the states above the Fermi momentum; and %

denote the s. p. states of both cases.
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ne (k) =1—n- (k) =0(ky — k)

is the momentum distribution in the uncorrelated
ground state and the index “A” refers to the anti-
symmetrization of the product of two plane waves.
The on-shell value of the lowest-order contribution
M, (k, w) corresponds to the BHF s. p. potential
U, (k). The second order term M, is the so-called
rearrangement contribution. It stems from the me-
dium dependence of the G matrix via the Pauli ope-
rator in the BG equation which plays an important
role for satisfactorily reproducing the depth of the

empirical nuclear optical potential and crucial for

restoring the Hugenholtz-Van Hove theorem''" %/,
The expression of M, reads.,
M, (kv o) =%Zn<<]’>n<<z>n><a> X
Jelsa
1<, L1GLe() +eD ]|k, aral? 5)

w+ela) —e(j) —elD) —ip

Due to many-body correlations, the Fermi
seas in asymmetric nuclear matter are partially de-
pleted., and thus the correlated momentum distri-
butions differ from the uncorrelated ones. To ac-
count for this physical effect, we consider the
third-order term Mj in the hole-line expansion of
the mass operator. M, is the renormalization con-
tribution to the BHF mass operator M, and it

reads™ ,

M, (ks @) =— >, (j) X

(ks j1GLlo+eG) Ik joas (6)

where

/cz(j):*[ (D

dw

aM] (]9 (U):}
w=¢e(j)

is at the lowest-order the depletion of neutron or

1. 12]

proton Fermi sea' . By considering the sum of

M, and M;, one gets a renormalized BHF approxi-

mation for the mass operator, 1. e. ,

M, (ks @) = M, (ky @) + M, (k, o)
=21, ks j1GLo+e(DTIE, joa

= >0, (ks j1GLw+e(D TR, s (8)

here n,(j) is the second-order approximation to the
momentum distribution in the correlated ground
state (7<kp), it reads

aMl (kv OU)

712(k>:1+|: r’)a)

} , for & < lkp. (9)
w=e(k)

Including the renormalization contribution to M, ,
one gets the following momentum distribution be-
low the Fermi surface (see Eq. (2.192) of Ref.
(1.

- B IM, (ks ) | IM; (ks w)
ng(k)—1+|: B dw }w s(k)’
for & < ks. (10)

As shown in Ref, [4], it is a very accurate appro-
ximation to replace in Eq. (6) the coefficient «, (j)
by its value k at the average of j in the Fermi sea,

i.e., at j=0.75kz. We have,
M, (b, w) =~— M, (k, w) (1D

where k=[1—n, () J,_,. 70, - Similarly, we can get
the momentum distribution above the Fermi sur-

face (see Eq. (2.196) of Ref. [1]), i.e.

‘:)Mz (k D) (U)

- IM, (&,
nzue):—[ 4 IM, Ck “’)}
Jw Jw w=e(k)
~—<1—K>[M} k> ke, (12)
dw w=¢e(k)

The quasi-particle strength is defined by fol-

lowing expression

1

Z(k):{l—%Re [M(k. m]} LU

w=e(k)

Up to second order approximation, it can be

written as™® ,

—1
Z(k) — {1 —%Re (M, (k. @)+ M, (k. m]}

w=¢e(k)

(14

According to the argument of Ref. [14], higher-
order contributions are strongly cancelled with
each other, and thus the above approximation is of
good accuracy.

According to Migdal-Luttinger theorem, the

discontinuity of momentum distribution at Fermi
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momentum ky should equal to the quasi-particle
strength at kp . this property together with particle
number conservation are used as criteria to assess
the validity of the theoretical methods for calcula-
ting the momentum distribution'*’. The fulfill-
ment of particle number conservation reads'"’

k%r{zz(k)ydk:L (15)

F (
3 Results and discussions

In this section we shall show the calculated
momentum distribution of asymmetric nuclear
matter at various densities and isospin-asymme-
tries.

In Fig. 1 we display the renormalization effects
on the predicted momentum distribution n(k),
i.e. , the effects induced by the third-order term
M, and the fourth-order term M, in the hole-line

expansion of the mass operator. From the Fig. 1,
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Fig. 1 Momentum distribution below (a) and above (b) the
Fermi surface in symmetric nuclear matter at by =1. 36

1

fm~'. The open squares n, (k) are obtained in the case

of not considering the renormalization contributions and
the solid squares n, (k) show the results by including

the renormalization effects.

one can see that due to the many-body correla-
tions, the s. p. states under the Fermi surface are
partly emptied. and those above the Fermi surface
are partly occupied in the ground state of nuclear
matter. The horizontal axis is the ratio of momen-

tum of nucleon state to Fermi momentum, and

vertical axis is the occupation probability for the

nucleons state |£). The open squares n, (k) are ob-
tained in the case of not considering the renormali-
zation contributions and the solid squares n, (&)
show the results by including the renormalization
effects.

By comparing the solid squares and the corre-
sponding open squares, it is noticed that the renor-
malization terms in the hole-line expansion of the
mass operator yields a non-negligible contribution

on the nucleon momentum distribution.
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Fig. 2 Nucleon momentum distribution in symmetric nuclear
matter at four density values p=0. 085, 0. 17, 0. 34
and 0.51 fm?,

(a) for momentum smaller than their respectively Fermi mo-
mentum and (b) for momentum larger than their respective

Fermi momentum.

It turns out under the Fermi surface, when in-

cluding the renormalization effect, occupation
probability of nucleons is getting larger while
above the Fermi surface, the occupation probabili-
ty is getting smaller, and this renormalization
effect should remain satisfied with the nucleons
sum rule. Our results are in fairly good agreement
with those obtained in Ref.[6] where the author
adopted a different scheme to account for higher-
order contributions instead of considering the
renormalization terms.

In the following, all momentum distributions
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are calculated by including the renormalization
effects. In Fig. 2 we show n(k) in symmetric nu-
clear matter at four different density values p=
0.085, 0.17, 0. 34 and 0.51 fm °. It is seen that
the density dependence of the momentum distribu-
tion, as a function of the ratio £/ky, is quite weak.,
which is consistent with the EBHF calculation in
Ref. [6] by adopting the separable AV14 interac-
tion and the prediction reported in Ref. [ 7] by
using the Green Function method.

In Fig. 3, we report the neutron and proton
momentum distributions below their respective
Fermi surfaces in asymmetry nuclear matter at va-
rious asymmetries 3=0, 0.2, 0.4, 0.6, 0.8 for
two densities p=0. 17 and 0. 34 fm *. In Fig. 4,
the corresponding results of the momentum distri-

butions above the Fermi surface are plotted . We

1.0
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Fig. 3 Neutron and proton momentum distributions below
their respective Fermi surfaces in asymmetric nuclear

matter at various asymmetry parameters.

see that above Fermi surface, at various asymme-
try parameters, momentum distributions of neu-
trons are nearly overlapped. This may due to the
fact that some parameters we choose in our calcula-
tion are not of precision. At the density p=0. 34
fm *, the curve at large momentums shows slight-
ly vibration, this may be caused by the instability
in the calculations at large momentums and high
densities. As an ab initio description, we accept

these results. It is clearly seen that the momentum

distributions of protons and neutrons depend sensi-
tively on the isospin-asymmetry. As the asymme-
try increases, the momentum distribution of pro-
tons becomes lower while neutrons one gets higher
below their respective Fermi surfaces with respect
to their common values in symmetric nuclear mat-
ter, namely, as increase of asymmetry parameter,
the neutron depletion below its Fermi momentum
becomes smaller, while the proton depletion below
its Fermi momentum becomes larger. Such an
isospin-asymmetry dependence of the neutron and
proton momentum distributions implies that at a
higher asymmetry, the many-body correlations in-
duced by the nucleon-nucleon interaction becomes

stronger on protons and weaker on neutrons.
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Fig. 4 Neutron and proton momentum distributions above
their respective Fermi surfaces in asymmetric nuclear

matter at various asymmetry parameters.

In order to see more clearly the isospin de-
pendence, in Fig.5 we display the occupation
probability of proton and neutron at momentum
k=0 as functions of the isospin-asymmetry. One
may notice from the figure that the neutron mo-
mentum distribution n, (£ = 0) increases and the
proton one n, (k=0) decreases almost linearly as
increasing asymmetry. This is consistent with pre-
diction reported in Ref. [7] by using the Green
Function method.

As a criterion to assess our calculation, we
have calculated the left hand side of the sum rule of

Eq. (15), and the integration is carried out up to
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4.0 fm ™' for p=0.17 fm™°.

The results are given

in Table 1.
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Fig. 5 The neutron and proton momentum distribution at
k=0 in asymmetry nuclear matter vs. isospin asym-

metry.

Table 1 Nucleon number conservation of asymmetry

The above-obtained satisfactory fulfillment of the
nucleon number conservation and the Migdal-Lut-
tinger theorem indicates that our present calcula-
tions are quite reliable.

We have also calculated quasi-particle strength
and the discontinuity of the momentum distribu-
tion at Fermi momentum kg in asymmetric nuclear
matter at various asymmetries for two densities
p= 0.17, 0.34 fm °.
separately in Tables 2 and 3.

The results are shown
By comparing the
two tables, we see that the Migdal-Luttinger theo-
rem is fulfilled satisfactorily in our approximation

for all asymmetries considered.

Table 2 Quasi-particle strength calculated in Eq. (14),

for two densities and at various asymmetry parameters

nuclear matter at density p=0. 17 fm™~

3

B Proton sum Neutron sum
0.0 0.98 0. 98
0.2 0.99 0.99
0.4 0. 99 0.98
0.6 0.98 0.95
0.8 0.98 0.99

0=0.17 fm™* 0=0.34 fm™*

B Neutron Proton Neutron Proton
0.0 0. 64 0. 64 0. 66 0. 66
0.2 0.61 0.68 0.65 0.69
0.4 0.61 0.73 0.63 0.72
0.6 0.61 0.78 0.63 0.74
0.8 0.62 0. 81 0. 64 0.75

Table 3 Discontinuity of the momentum distribution at Fermi

momentum, calculated in Eq. (16), for two densities

and at various asymmetry parameters

It is seen that the particle number conserva-
tion is fulfilled satisfactorily in our improved ap-
proximation.

According to the Migdal-Luttinger theorem,
at Fermi momentum ky, the quasi-particle strength
defined in Eq. (13) must be equal to the disconti-
nuity of the momentum distribution at the Fermi
momentum. In our approximation scheme [ see
Egs. (10) and (12)], the discontinuity at k¢ can be

written

ZChy) =, (ke ) — 1y (B (16)

We have calculated the two quantities for symme-

3

try nuclear matter at p=0. 17 fm °, and obtained

2(/@) =0. 61 and Z(kz) =0. 64. This means that
the Migdal-Luttinger theorem is violated only by
about 4. 7% in our calculation and the fulfillment

of the Migdal-Luttinger theorem is better than that

in Ref. [6] where the authors got 210. 56 , Z(kg)
=0.64, and the theorem is violated by 12.5%.

0=0.17 fm 3 0=0.34 fm ™3
B Neutron Proton Neutron Proton
0.0 0.61 0.61 0.62 0.62
0.2 0.58 0. 65 0.62 0.65
0.4 0. 60 0.71 0.61 0.70
0.6 0.61 0.76 0.63 0.71
0.8 0.63 0. 80 0.65 0.74

4 Summary and conclusion

We have investigated the momentum distribu-
tion of nucleons in asymmetric nuclear matter
within the framework of the extended Brueckner-
Hartree-Fock approximation. The density depen-
dence and isospin-asymmetry dependence of the
nucleon momentum distribution have been predic-
ted. The density dependence, as a function of the
ratio k/ky, turns out to be rather weak, in agree-
ment with the results given in Ref. [6 —7]. It is

shown that as the asymmetry increases, the neu-

tron depletion below its Fermi momentum becomes
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smaller, while the proton depletion below its Fer-
mi momentum becomes larger, which implies that
at a higher asymmetry, the many-body correlations
induced by the nucleon-nucleon interaction be-
comes stronger on protons and weaker on neu-
trons. At momentum £=0, the occupation proba-
bility for the neutron state increases and for the
proton state decreases almost linearly as the asym-
metry increases. We have also calculated the quasi-
particle strength at the Fermi surface. The ob-
tained result of Z(k:) =0. 64 is close to the value
0. 63 obtained in NIKHEF experiment for P-shell

orbitst*

and in good agreement with other experi-

mental data' .
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