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Abstract: With great significance in describing the state of quantum system, the Wigner function

of the spin half non-commutative Landau problem is studied in this paper. On the basis of the re-

view of the Wigner function in the commutative space, which is subject to the *-eigenvalue equa-

tion, Hamiltonian of the spin half Landau problem in the non-commutative phase space is given.

Then, energy levels and Wigner functions in the form of a matrix of the spin half LLandau problem

in the non-commutative phase space are obtained by means of the *-eigenvalue equation (or Moyal

equation).
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1 Introduction

In recent years the Wigner function has en-
joyed a wide popularity in virtually all areas of
physics. As a quasi-probability distribution func-
tion in phase-space and a highly semi-classical ap-
proximation‘, the Wigner function has been use-
ful in describing quantum transport in quantum op-
tics, nuclear physics, decoherence (e. g. quantum
computing), quantum chaos, signal processing,
etc.. Nevertheless, a remarkable aspect of the
Wigner function was not pioneered until 1975 by
Moyal according to the internal logic of Quantum

Mechanicst.

In fact, with the Moyal *-eigenvalue
equation as its general form, the Wigner function
is not only as valuable as other formulations, such
as Schrodinger, Heisenberg regularization opera-
tor, Feynman path integral quantization, etc. , but

also of great significance in modern quantum
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measurement. For example, the Wigner function
of an ensemble of helium atoms was discussed in
Ref. [3].

Furthermore, the emergence of the noncom-
mutative geometry with a neutral way in string
theory/(M-Theory) in a definite limit not only
provides an effective analysis of the duality, BPS
state and D-brane dynamics, but also causes a
revolution in the whole physical theory™ . In the
ultra-micro field the space-time coordinates which
are never commutative can satisfy the uncertain-re-
lation of space-time. With this, the space-time
point loses its original sense and the geometry
which describes the original physical phenomenona
is not consistent with the new physics in this space-
time area. Therefore, it is necessary to have a new
space-time geometry-noncommutative space-time

geometry to describe the gravitation™. Especially,
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Yang-Mills theory (NCYM) in the non-commuta-
tive flat space, the relationship between non-com-
mutative geometry and the D-membrane kinetic
need paying great attention. Recent studies show
that the *-eigenvalue equation which the Wigner
function obeys in the phase space is the
%-eigenvalue in the Moyal equation, and it is the
same as Moyal-Weyl product in ultra-spin theories.
The causes of such sameness are worth pondering.
Thus, in recent years there have been a lot of
delightful achievements in the noncommutative
field theory. the topological phase and the correc-
tion of noncommutative energy levels, etc. 2"

For example, Refs. [ 21 — 26 ] have studied the
Wigner function in noncommutative space. With
the introduction of the Wigner function in commu-
tative space and its *-eigenvalue equation, the
Wigner functions and energy levels of spin half
Landau problem in the non-commutative phase

space are analyzed and obtained by means of the

*-eigenvalue equation in this article.

2  Wigner Function and Its *-eigen-

value Equation

This part intends to make a review of the
Wigner function and its *-eigenvalue equation. It is
known that the Wigner function is of great signifi-
cance in the physical measurements and theoretical
studies. In the phase space with the degree of free-

dom n the general form of the Wigner function is

W(x, pst) = J dye ™ (x —

1
(2zh)"

Yo y
Slolxt . P

This is a special representation of the density
matrix. Alternatively, it may be regarded as the
auto-correlation function of the wave function ¢(x)
in the quantitative subsystem.

According to Eq. (1), we can prove that the
time-dependent Wigner function has the following

dynamic evolution equation

aW: p IW

v aw
dx dp :

dt m Jdx

(2)

Of course, we can also solve the Moyal equa-
tion instead of the Schrodinger equation to get the

following equation with *,-eigenvalue™*?,

W _ Hx*W —Wx,H

3 o , (3)
where the %-product is
*h:eXp[%(al apiap a;)} 4

Since the *,-product involves exponential
operators, much difficulty exists in the real calcu-
lation. In fact, A is a very small volume, so
%*,-product, as a series expansion, can be ex-

pressed ast”

f(xs p) ¥, g(x, p) =
f(x_‘_% 519’ pP—

%f,rjg(x, p) (5)
or

f(x, p)*,g(x, p) =
[xs p)g(x—% 3, p+% 3) 6)

In this way, the Wigner function meets the binding

. : 19
x,-eigenvalue equations-'"

H(x, p) x,W(x, p) =H(x+% d,, p—% r7,,j><
W(x, p) =EW(x, p) 7
and
Wix, p) ¥, H(x, p) =
W(x, p)H(x—% 5,), p+%51») =
EW(x, p) . (8

Here E is the energy eigenvalue of H¢y=E¢.
Although Egs.

the nature of the Wigner function, what is still

(7) and (8) completely describe

worth mentioning is that the method of transfor-
mation from #*-product in the non-commutative
phase space to the general multiplication is the
same as that of conversion between Moyal *-eigen-
value Egs. (7) and (8). Therefore, the study on

the Wigner function in non-commutative phase
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space is of great significance.

3 Hamiltonian of Electrons in a Mag-
netic Field in the Non-commutative

Phase Space

This section aims at getting Hamiltonian for
electrons in a magnetic field in the non-commuta-
tive phase space. It is known that in the non-com-
mutative phase space, the steady state Schrodinger

equation is usually written as™*

H(x, p) * $(x) =E¢(x) . (9

Here, Moyal-Weyl product or the *-product is de-

fined as

Sz 10
ij i
2 a‘rl E).rj + 202

2, 9, 1. Q0

Thus, as a series expansion, *-product can be ex-

pressed as

(f*g)(X9 p):f(X9 p)g(X‘a p)+
1

Zf“g@ij Ii fIig |;z,:11 +

E» 26,-, [ gl -, +0@%) , 1D
where f(x) and g(x) are two arbitrary functions.
Now, we begin to discuss the energy level of elec-
trons in the magnetic field in the non-commutative
According to Ref. [227], in two di-

mensions we can rewrite Eq. (11) as

phase space.

- 1 - 1

X1 —ax %gpz’ JTZZQIZ+E5P1,
1

pl —ap1 + (9'1)7 poz p;*iﬁx“ (12)
2ah

here, 0 and @ are both small non-commutative pa-

From Ref. [22] we know 0=4a” k2 (1—
< (10" GeV) ™

rameters.
0’2 )/69 6

commutative parameter.

2, where « is another non-

Now, let’s discuss the movement of the elec-
tron with the quantity of electric charge ¢ in the
uniform magnetic field B(0, 0, B). In terms of the

electronic mass ¢ and spin 1/2, when the electron

moves in the o-xry plane, its Hamiltonian in the

phase space is

H=— 1 |:(P1+;£ 2)2+ (Pz_%B‘Iljz] +
C C

eh B
2pc

Oyz. (13)

According to the Moyal-Weyl product, we can
change the *-product to the ordinary multiplication
p)—~H(x,

). As aresult, the Hamiltonian of the electron in

only by means of a Bopp change H(x,

the magnetic field in the non-commutative phase

space 18

H 1|:(A1+é17j“+
/u C

(Az_ezili.%lj“]Jf%(}/ (14)

Inserting Eq. (12) into Eq. (14), we get the

Hamiltonian in non-commutative phase space

-4l o (k)]

_ (B i eh -
2,1[("+4m jp (26“+2h(1j“] REREt
(15)
Ordering
eBa 0
. . o Tia
#:4#—, wl‘:# , (16)
eB
2/1(01‘.— )
ac
we obtain

. 1 ~~
H=—(p 4 p) + Lmi (o2 +a2) +
2p 2

eh B~

(:)L(Igpl 11p2)+762 (17)

Herelz: and w, are the electron’s equivalent mass

and equivalent frequency respectively in the mag-

netic field in the non-commutative phase space.

4 The Wigner Function and Energy
Level of the Spin Half Landau
Problem in NC Phase Space

This section provides the Wigner function and
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energy level of the spin half LLandau problem in NC
phase space. From the third dsection we know the
Hamiltonian of spin half Landau problem in the

non-commutative phase space

N 1 .
H=—p+ p)+ w2+ 2 +
2p 2

eh B~

C:JL(Izplfl”lpz)‘FﬂO'z. (18)

Taking into account the electron spin as well

as a Pauli matrix

. 1 0
07 — s
0o —1

we know that in the representation of o, the

Wigner function has the following form

. w0
W:
0o W,

(19

Thus, in the phase space the spin half Landau

problem is described by the following equation

1 .
P P+ et (e )
2p 2

(:)[‘(l'zp] *Ilpz) +%Z:| *

w0
=F
O Wz O WZ

W, o0
(20)

After calculation, we get the Wigner function of
the spin half LLandau problem in the non-commuta-

tive phase space

1 .
{Jp? + P +%ﬂw%<x% + )+

2p
(:)1‘(1'2171 — X1 p2) JF%} *Wl :EVAVl. 2D
and
1 ) 1 ~~ ‘
—(pi 4 p3) + i (2] +25) +
2u 2
C:)]‘<I2p] *I]Pz) *%] *Wz :Ezﬁfz. (22)
In terms of
él*Alfﬁa 52:E2+@, (23)
2pc 2pc

Egs. (21) and (22) change to

1 .
[xp% T8+ et (a4 )+
2p 2

C;L(l'zi)l — 1 p2) } *Wl :élf/Vl s (24)
and

1 -
—(pl + pD) +lpwi(1?f + 2+
2p 2

C:)L<12/)1*11P2):| *Wg:éng. (25)

Inserting the Moyal eigenvalue equation into Egs.

(24)and (25) respectively, we have
1 2 T2 2
T[(]BI + p3) + plwi (2 + 25) —
2p
h2~2~2 2 02 7h2 2 2
T w (3, +33,) I(("‘_._("?)_’_

— 2
2pwy (p p1 — 21 p2) ‘5‘%/1601‘ X

<a1‘] apz 7(712 apl )]WI :élwl ’ (26)
and

1 2 2 272 2 2
? (pt + p2) T pfwi (&t +a3) —

L
R’ T2 2 2 2 ’ 2 2
hiat @3, +oi) — B o)+
2;&:}1‘(1"2[)1 —xp:) +

2 ~ oA
%/»KUL((?TIJPZ —(]12 a/’l ):|W2 :€2W2 . (27)

This equation is similar to the Landau problem.
Now let’s introduce four new variables X; (i =1,

2, 3, 4) for Eq. (26),

1 w

Xl - — P> —'— pon x|
2/,&(()14 2
1 paw

Xz = — D -+ it T, |
2,1(1)[‘ 2
1 paw

Xg - — pl — Hen o D)
2/1(1)1‘ 2

(28)
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Straightforward calculation leads to

1 — -
;[3,,@1‘()(% + X1 — o (X4 XD —
/L

Sh e (9 0% ) 4 (0% 4
?MUI‘((X,_)‘F(Xl)JFg,UwL((XI+(X3) X

W, =e,W,. (29)

With two more new variables & and 7,

. :%X% X,
_ 2 2 2

Eq. (29) may be rewritten as follows,

oulo(m 9 9\ _ofE 2o
Ho(F i) e f - |

E]W]. (31)

With the separation of variables, VAVl (&, p) =

W, (&' W, (), &, =6e"—2¢", we have

‘%E—saé—afél}ﬁms)l =0. (32

and

%Hf,}g%av%z]w@y —0. (33

Finally, we can find the solutions for Egs. (32) and
(33

(— D"
wh

W, (&), = e 2L, (&) ,

m=0, 1, =+ (34)

and

el — 1 6'371 = 5
€*(n+2)2h7 7’1*09 17 (30)

Thus, we have

(— D

Wil P = (mh)*

¢ GV L (OL, () .

(36)

E, :3(711-0—%)#;)1, — (n-l—%)h;n + ehB

2pc’
(37)

Symmetrically, we get

W, (s v) Gl D D S (L,
mn (Tch)z m n .
(38)
_— 1y, - 1Y), ~ kB
Ezf?)(erZ)th (nJrZ)th Dpc
(39)

These are the very Wigner function and energy
level of the spin half Landau problem in non-com-

mutative phase space where the additional items of
both non-commutative parameters ¢ , ¢ and a are

included. When both 49 and @ are close to 0, «a is
close to 1, and the results are back to be that in the

commutative space.

5 Conclusion

There is widespread charged particles moving
in a magnetic field in nature, so discussing the
charged particles is of great theoretical significance
and application value in the magnetic field, such as
cyclotron mass spectrometry, magnetic focusing,
Hall effect, Zeeman effect and the Landau problem
and so on. As a quasi-probability distribution func-
tion on phase space, a special representation of the
density matrix, and a good semi-classical approxi-
mation, the Wigner function is very important in
quantum measurement. In this article, on the ba-
sis of the revision of the nature of Wigner function
in the commutative space the Wigner function of
the spin half Landau problem in non-commutative
phase space is obtained by the #*-eigenvalue equa-
tion (Moyal equation). The result is of great sig-
nificance in many practical problems because it not
only shows that the Moyal method in the phase
space and other quantization methods are equiva-
lent, but also supports that it is compatible with
classical mechanics. This is the very importance of

the Wigner function.
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