Article ID: 1007-4627(2005)01-0011-06

Halo or Skin in the Excited States of Two Couples of Mirror Nuclei ¹³N-¹³C and ¹⁵N-¹⁵O^{*}

CHEN Jin-gen^{1,2}, CAI Xiang-zhou², SHEN Wen-qing^{2,4}, MA Yu-gang²,

REN Zhong-zhou³, JIANG Wei-zhou², ZHONG chen², WEI Yi-bin²,

GUO Wei², ZHOU Xing-fei^{2,4}, MA Guo-liang², WANG Kun²

(1 Zhejiang Forestry University, Hangzhou 311300, China;

2 Shanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, China;

3 Department of Physics, Nanjing University, Nanjing 210008, China;

4 College of Sciences, Ningbo University, Ningbo 315211, China)

Abstract: Properties of two pairs of mirror nuclei ¹³N-¹³C and ¹⁵N-¹⁵O are investigated by using the nonlinear relativistic mean-field theory. It is found that all the calculated binding energies with two different parameter sets are very close to the experimental ones for both the ground states and the excited states. The calculations show that the first excited state $(2s_{1/2})$ and the third excited state $(1d_{5/2})$ in ¹³N are both unbound resonances with proton halo structure, whereas the third excited state $(1d_{5/2})$ in ¹³C is weakly bound with a neutron skin. It is also predicted that there has a proton halo in the second excited state $(2s_{1/2})$ of ¹⁵N as well as a neutron skin in the first excited state $(2s_{1/2})$ of ¹⁵O.

Key words: mirror nuclei; excited state; relativistic mean field; halo (skin) CLC number: O571.21 Document code: A

The nuclei far from the β -stability line have been studied widely and exotic structures (halos or skins) in the ground states were found in many nuclei^[1-22]. However, studies on halo or skin in the excited states of nuclei near the β -stability line are relatively scarce. Morlock et al^[23] shed light on the existence of proton halo in the excited states of stable nuclei firstly. They revealed experimentally the existence of a proton halo in the first excited state of ¹⁷F. Ren et al^[24] investigated ¹⁷F using the nonlinear relativistic mean-field (RMF) theory and reached the same conclusion. Liu et al^[25] and Lin et al^[26] showed the existence of neutron halo in the excited states of nuclei ¹²B and ¹³C. Ren et al^[27] calculated nucleon density distributions for the excited states of ¹³C, ¹²B, ¹⁶N and ¹⁷O with RMF and gave a theoretical proof for halo and skin. Moreover, Arai et al^[28] investigated the more complicated halos in the second excited state of ⁶Li with a fully microscopic three-cluster model and predicted that ⁶Li has a conspicuous halo-like structure formed by a neutron and a proton surrounding the α core, i. e., deuterium halos. Li et al^[29] provided the experimental evidence of deuterium halos in the second excited state of ⁶Li.

Since RMF theory has been applied with con-

Received date: 31 - Aug - 2004

Foundation item: Major State Basic Research Development Program (G2000077404); National Natural Science Foundation of China (10125521); Fund of Education Ministry of China (20010284036); Shanghai Phosphor Program (03 QA 14066)

Biography: Chen Jin-gen(1972), male(Han national), Anhui Ma-an shan, Student for Ph. D degree working on study of exotic structure of proton-rich nuclei; E-mail: Chenjg@sinr. ac. cn

siderable success to the quantitative description of nuclear properties in the ground states and to the in the halo the excited prediction for states^[2.5.8,24.27.30-36]), it is also interesting to give theoretical prediction for halo or skin in the excited states of other nuclei with RMF model. In this paper, we investigate existance of a halo or a skin in some excited states of two couples of mirror nuclei ¹³N-¹³C and ¹⁵N-¹⁵O using the frame of nonlinear RMF.

The RMF theory with σ , ω , and ρ meson is in the mean time a standard approach. Here we make a brief description (Details can be found in Refs. [2, 5, 8, 30-36]). We start from the local Lagrangian density for interacting nucleons, σ , ω , and ρ mesons and photons, which are used to obtain the RMF equations.

$$\mathcal{L} = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - M)\Psi - g_{\sigma}\overline{\Psi}\sigma\Psi - g_{\omega}\overline{\Psi}\gamma^{\mu}\omega_{\mu}\Psi - g_{\rho}\overline{\Psi}\gamma^{\mu}\rho_{\mu}^{a}\gamma^{a}\Psi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - \frac{1}{4}R^{a\mu\nu}R_{\mu\nu}^{a} + \frac{1}{2}m_{\rho}^{2}\rho^{a\mu}\rho_{\mu}^{a} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - e\overline{\Psi}\gamma^{\mu}A^{\mu}\frac{1}{2}(1 - \tau^{3})\Psi$$

with

$$\Omega^{\mu\nu} = \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu},$$

$$R^{\mu\nu} = \partial^{\mu}\rho^{\mu\nu} - \partial^{\nu}\rho^{\mu\mu},$$

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu},$$

where σ , ω_{μ} , and β_{μ}^{μ} denote the meson fields and their masses are given by m_{σ} , m_{ω} , and m_{ρ} , respectively. The nucleon fields and rest masses are denoted by Ψ and M, respectively. A is the photon field which is responsible for the electromagnetic interaction. The effective coupling constants between mesons and nucleons are g_{σ} , g_{ω} , and g_{ρ} , respectively. The coupling constants of the nonlinear σ terms are called g_2 and g_3 . τ^{μ} represents the isospin Pauli matrices and τ^3 is the third component of τ^{μ} . Under the mean field approximation, the meson fields are considered as classical fields and they are replaced by their expectation values in vacuum. Using the procedures similar to those of Refs. [2, 5, 31, 33], we obtain a set of coupled equations for mesons, nucleons, and photons. They are solved consistently in coordinate space by iteration. The nonlinear RMF parameter sets of NL3^[37] is chosen for numerical calculations in this work. We use the term $0.75 \times 41 \ A^{1/3}$ to evaluate the correction of the additional energy due to the motion of the center of mass^[6].

We select ¹³C as an example to explain the details of the calculations. First, we calculate the binding energy, single-particle levels, RMS radii of proton and neutron density distributions for the ground state of the core nucleus (¹²C). Then we calculate the ground state properties of ¹³C by assuming the last neutron occupies the state $1p_{1/2}$. Finally the properties for the first or the third excited states of ¹³C are obtained by assuming the last neutron occupies $2s_{1/2}$ or $1d_{5/2}$. Every step is a selfconsistent RMF calculation. The total binding energy, separation energy, single particle energy, radii, and wave functions of each nucleon are obtained and root-mean-square radius of the last proton can be calculated by its wave function.

The calculated results for the mirror partners ¹³N-¹³C are displayed in table 1 and those for ¹⁵N-¹⁵O are listed in table 2. In the two tables, nL_J (LP) denotes the quantum number of the state occupied by the last nucleon. B_{exp} ^[38] and B represent experimental and theoretical binding energies, respectively. The root-mean-square (RMS) radii of matter, proton, neutron, and the last nucleon density distributions are denoted by R_m , R_p , R_n , R_{LP} , respectively. The single particle energy of the last nucleon (a proton for ¹³N and ¹⁵N or a neutron for ¹³C and ¹⁵O) is denoted by $\varepsilon_{LP}(p/n)$.

It can be seen that the RMF calculations can reproduce the binding energies well as a whole. The differences of binding energy between theory and experiment are very small. It indicates that the theoretical binding energies are very close to the experimental ones. One should note that all these Table 1 The RMF results for ¹³ N-¹³ C with NL3*

$nL_{I}(LP)$	13 N			¹³ C		
	$1p_{1/2}^{GS}$	2s1/2 ES1	$1d_{5/2}^{ES3}$	$1p_{1/2}^{GS[27]}$	2s1/2 ES1	$1d_{5/2}^{\mathrm{ES}}$
Bexp	94.11	91.74	90.56	97.11	94.02	93.26
В	94.12	92.86	91.46	98.09	92.48	92.49
R _m	2.38	1.	/	2.40	2.48	2.41
$R_{\rm p}$	2.46	/	1	2.33	2. 21	2.24
$R_{\rm n}$	2.29	/	/	2.45	2.71	2.53
R_{LP}	3.13	/	/	3.03	4.71	3.88
ε _{LP} (p/n)	-4.76	+0.52	+2.40	-8.44	-1.93	-0.33
$ R_{\rm p}-R_{\rm n} $	0.17	1	/	0.12	0.50	0.29

results are obtained without readjustment of any parameter.

* GS, ESI and ES3 denote the ground states, the first and the third excited states, respectively. The units of binding energies and of single particle energies are in MeV and those of various RMS radii and the corresponding differences between proton RMS radii and neutron RMS radii are in fm. The other details can see text.

nL _J (_{LP})	¹⁵ N			¹⁵ O		
	$1 p_{1/2}^{GS}$	2s1/2 ES2	$1d_{5/2}^{ES2}$	$1p_{1/2}^{GS}$	2s1/2 ES1	$1d_{5/2}^{ES2}$
Bexp	115.49	110.19	110.22	111.96	106.78	106.72
В	115.16	108.19	111.87	111.79	104.80	104.75
R _m	2.55	2.75	2.52	2.56	2.67	2.61
R _p	2.52	2.90	2.53	2.61	2.60	2.57
R _n	2.58	2.61	2.51	2,50	2.74	2.51
R _{LP}	2.87	4.79	3.47	2.83	· 4.30	3. 38
$\epsilon_{LP}(p/n)$	-11.22	-0.88		-14.59	- 3. 58	-4.12
$ R_p - R_n $	0.06	0.29	0.02	0.11	0.14	0.06

Table 2 The RMF results for ¹⁵ N-¹⁵ O with NL3*

* The other details can see the caption for table 1 and see text.

From the single particle energy of the valence proton for ¹³N listed in table 1, we know that the two lowest excited states of ¹³N are both unbound which are consistent with the experimental results^[38, 39]. It shows that the RMF code with NL3 parameters can predict properly the unbound excited states for ¹³N. As well known, a wave function for an unbound resonance is not square integrable and must therefore lead to an infinitely large RMS radius. So here only the binding energies are given and all kinds of radii and corresponding density distributions are both omitted. It is not easy to give a confirmed conclusion to the structure in the excited states of ¹³N. However, considering the charge symmetry, one can say that there may exist a unbound proton halo in the first and the third excited states of ¹³N, respectively.

The results for ¹³C are also displayed in table 1 and Fig. 1, respectively for comparison with its mirror partner ¹³N. Since the properties for the first excited state in ¹³C has been calculated previously^[27], here we just emphasize on the third excited state of ¹³C. The RMS radius of the valence neutron in the third excited state of ¹³C is 3. 88 fm. It agrees with the experimental result (3. 68 \pm 0.40) fm within the error bar, where it was declared that there is a neutron skin in the third excited state of ¹³C^[25]. The single particle energy (- 0.33 MeV) of the valence neutron is small and it indicates that the $2s_{1/2}$ excited state is weakly bound compared with the ground state in ¹³C^[38,39].

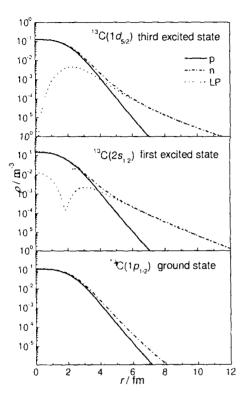


Fig. 1 The density distributions of proton, neutron, and the last nucleon for the ground state, the first and the third excited states in 13 C.

At the same time, it should be noted that the calculated $|R_p - R_n|$ (0. 29 fm) is not very large. Therefore it suggests that, as done by Liu et al. a neutron skin can form in the third excited state of ¹³C. From Fig. 1, it can be seen that the neutron density distribution shows an extensive region than the proton one when the last neutron occupies the $1d_{5/2}$ state. It is somewhat similar to that for the first excited state of ¹³C where a neutron halo has been predicted both experimentally and theoretical $ly^{[25,27]}$.

For ¹⁵N-¹⁵O, the first and the second excited states for ¹⁵N are the $1d_{5/2}$ and $2s_{1/2}$, respectively, whereas the excitation order of ¹⁵O is contrary to that for ¹⁵N^[49]. It can be seen that from table 2, the calculated results for the first excited state $(1d_{5/2})$, are almost the same as those for the ground state, $(1p_{1/2})$ in ¹⁵N, except for the smaller single particle energy of the valence proton. Hence there is no any exotic structure in the first excited state of ¹⁵N. But the situation is significantly different when one sees the second excited state of ¹⁵N, where the RMS radius of the last proton is 4.79 fm and it is greatly larger than the matter radius of 2.75 fm. In addition, $|R_p - R_n|$ (0.29 fm) for the second excited state is highly larger than that for the ground state where it is 0.06 fm. The single particle energies for ¹⁵N listed in table 2 show that the last proton is tightly bound in the ground state (-11.22 MeV) and weakly bound in the excited state (-0.88 MeV). We plot in Fig. 2, the density distributions of proton, neutron and the last proton for ¹⁵N. It can be seen that the proton density distribution for the second excited state of ¹⁵N has a long tail while that for the first excited state is normal. Therefore, it suggests that there exists a proton halo in the second excited state of ¹⁵N. From table 2 we can see that for the first excited state of ¹⁵O, the valence neutron RMS radius is 4.30 fm, which is greatly larger than the matter RMS radius, 2.67 fm. However, the difference of RMS radius between proton and neutron for the first excited state is only 0.14 fm, which is little larger than that of the ground state, 0.11 fm, but is rare smaller than that for the second excited state of ¹⁵N, 0.25 fm. Moreover, the single particle energy of the last neutron in the first excited state of 15 O is -3.58 MeV, and its absolute value is relatively larger than that for the second excited state of ¹⁵N, -1.33 MeV. Hence it is suggested that there might exist a neutron skin in the first excited state of ¹⁵O. The neutron density distribution in the first excited state of ¹⁵O is obviously diffuse compared with that in the ground state (see Fig. 2), however the difference between neutron and proton density distributions is not very large and this confirms the above conclusion. There is no exotic structure in the $ld_{5/2}$ state of ¹⁵O which is the same as that for the first excited state of ¹⁵N.

To summarize, we calculated the properties of

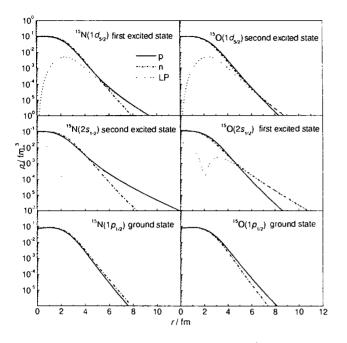


Fig. 2 The density distributions of proton, neutron, and the last nucleon for the ground state, the first and the second excited states in the mirror nuclei ¹⁵ N-¹⁵ O.

two pairs of mirror nuclei by using the framework of nonlinear RMF. It shows that the RMF code can well reproduce the experimental binding energies.

References,

- [1] Tanihata I, Hamagaki H, Hashimoto O, et al. Phys Rev Lett, 1985, 55: 2 676.
- [2] Reinhard P G, Rufa M, Maruhn J, et al. Z Phys, 1986, A323: 13.
- [3] Serot B D, Walecha J D. Adv Nucl Phys, 1986, 16: 1.
- [4] Mittig W, Chouvel J M, Zhan W L, et al. Phys Rev Lett, 1987, 59: 1 889.
- [5] Reinhard P G, et al. Rep Prog Phys, 1989, 52, 439.
- [6] Gambhir Y K, Ring P, Thimet A. Ann Phys, 1990, 198: 132.
- [7] Brown B A. Phys Rev. 1991, C43: R1 513.
- [8] Warrier L S, Gambhir Y K. Phys Rev, 1991, C49: 871.
- [9] Villaril A C C, Mittig W, Plagnol E, et al. Phys Lett. 1991, B268: 345.
- [10] Tanihata 1. Hirata D. Kobayashi T, et al. Phys Lett, 1992, B289: 261.
- [11] Hirata D, Toki H, Tanihata I, et al. Phys Lett, 1993, B314:
 168.
- [12] Zhukov M V. Danilin B V, Fedorov D V, et al. Phys Rep, 1993. 231: 151.
- [13] Sugahara Y, Toki H. Nucl Phys. 1993, A579: 557.

The calculations show that the first and the third exited states, $2s_{1/2}$ and $1d_{5/2}$ in ¹³N are both unbound while the third exited states, $1d_{5/2}$ in ¹³C, together with the first excited state, $2s_{1/2}$ in ¹⁵N, and the second excited state, $2s_{1/2}$ in ¹⁵O are all weakly bound. The density distributions of proton for 15 N in the $2s_{1/2}$ state extends sharply and has a long tail, which is absolutely different from those for its ground states. It shows that there exists a proton halo in the second excited state of ¹⁵N. At the same time, it is predicted that there is a neutron skin in the state of ¹³C and in the first excited state of ¹⁵O because of the smaller differences of density distributions between proton and neutron as well as the larger single particle energy of the last neutron. For ¹³N, it is possible that there has a proton halo and skin in the first and the third unbound excited resonances, respectively. It is necessary to carry out related experiment for the confirmation of our theoretical prediction.

- [14] Varga K, Suzuki Y, Ohbayasi Y. Phys Rev, 1994, C50:
 189.
- [15] Gambhir Y K. Nucl Phys, 1994, A570: 101.
- [16] Warner R E, Kelley J H, Zecher P, et al. Phys Rev, 1995, C52. R1 166.
- [17] Negoita F, Borcea C, Carstoiu F, et al. Phys Rev, 1996, C54: 1 787.
- [18] Blanka B, Marchanda C, Pravikoffa M S, et al. Nucl Phys, 1997, A624: 242.
- [19] Lalazissis G A, Farhan A R, Sharma M M. Nucl Phys, 1998, A628: 221.
- [20] Ren Z Z, Mittig W, Sarazin F. Nucl Phys, 1999, A652, 250.
- [21] Sauvan E, Carstoiu F. Orr N A, et al. Phys Lett, 2000, B491: 1.
- [22] Thompson I J. Nucl Phys, 2002. A701: 7.
- [23] Morlock R, Kunz R, Mayer A, et al. Phys Rev Lett, 1997, 79: 3 837.
- [24] Ren Z Z, Faessler A, Bobyk A. Phys Rev, 1998, C57: 2 752.
- [25] Liu Z H, Lin C J. Zhang H Q, et al. Phys Rev, 2001, C64: 034312.

- [26] Lin C J, Liu Z H, Zhang H Q, et al. Chin Phys Lett, 2001, 18, 1 183.
- [27] Ren Z Z, Jiang W Z, Cai X Z, et al. Commun Theor Phys, 2002, 38: 470.
- [28] Arai K, Suzuki Y, Varga K. Phys Rev, 1995, C51: 2 488.
- [29] Li Z H, Liu W P. Bai X X, et al. Phys Lett, 2002, B527: 50.
- [30] Marcos S. Van Giai N, Savushkin L N. Nucl Phys, 1992, A549; 143.
- [31] Horowitz J, Serot B D. Nucl Phys, 1981, A368: 503.

- [32] Patra S K. Nucl Phys, 1993, A559: 173.
- [33] Ren Z Z, Mittig M, Chen B Q. Phys Rev, 1995, C52; 20.
- [34] Furnstahl R J, Price C E. Phys Rev, 1989, C40, 1 398.
- [35] Tanihata I, Hirata D, Toki H. Nucl Phys, 1995, A583, 769.
- [36] Sharma M M, Nagarajan M A, Ring P. Phys Lett, 1993, B312: 377.
- [37] Lalazissis G A, König J, Ring P. Phys Rev, 1997, C55: 540.
- [38] Audi G, Wapstra A H. Atom Mass Eval, 1993, 32: 1 809.
- [39] Ajzenberg-Selove F. Nucl Phys, 1991, A523: 1.

镜像核¹³N⁻¹³C和¹⁵N-¹⁵O中的激发态晕或皮^{*}

陈金根^{1,2},蔡翔舟²,沈文庆^{2,4},马余刚²,任中洲³,蒋潍舟² 钟 晨²,魏义彬²,郭 威²,周星飞^{2,4},马国亮²,王 鲲²

(1浙江林学院理学院,浙江杭州,311300;
2中国科学院上海原子核研究所,上海 201800;
3南京大学物理系,江苏南京 210008;

4 宁波大学理学院,浙江 宁波 315211)

摘 要:用非线性相对论平均场对两对镜像核¹³N⁻¹³C和¹⁵N⁻¹⁵O进行了研究.发现无论在基态还是激发态,用两套参数所得的结合能都跟实验值很接近.计算结果显示¹³N的第一激发态(2s_{1/2})和第 三激发态(1d_{5/2})各存在一个非束缚的质子晕,而¹³C的第三激发态(1d_{5/2})存在一个弱束缚的中子 皮.另外研究表明,在另一对镜像核¹⁵N⁻¹⁵O的第二激发态(2s_{1/2})和第一激发态(2s_{1/2})分别存在一 个中子晕和质子皮.

关键词:镜像核;激发态;相对论平均场;晕(皮)

 ^{*} 基金项目:国家重点基础研究发展规划资助项目(G2000077404);国家自然科学基金资助项目(10125521);国家教育部基金资助项目(20010284036);上海启明星基金资助项目(03 QA 14066)